Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T08:37:55.992Z Has data issue: false hasContentIssue false

Development of Ceramic Waste Forms for High-Level Nuclear Waste over the Last 30 years

Published online by Cambridge University Press:  19 October 2011

Eric Vance*
Affiliation:
[email protected], Australian Nuclear Science and Technology Organisation, Institute of Materials and Engineering Science, New Illawarra road, Menai, NSW 2234, Australia, 61-2-9717-3019
Get access

Abstract

Many types of ceramics have been put forward for immobilisation of high-level waste (HLW) from reprocessing of nuclear power plant fuel or weapons production. After describing some historical aspects of waste form research, the essential features of the chemical design and processing of these different ceramic types will be discussed briefly. Given acceptable laboratory and long-term predicted performance based on appropriately rigorous chemical design, the important processing parameters are mostly waste loading, waste throughput, footprint, offgas control/minimisation, and the need for secondary waste treatment. It is concluded that the “problem of high-level nuclear waste” is largely solved from a technical point of view, within the current regulatory framework, and that the main remaining question is which technical disposition method is optimum for a given waste.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hatch, L. P., American Scientist, 41, 410 (1953).Google Scholar
2. Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R. C. (North-Holland, Amsterdam, 1988).Google Scholar
3. McCarthy, G. J., Nucl. Tech., 32, 92 (1977).Google Scholar
4. Dosch, R. G., Lynch, A. W., Headley, T. J. and Hlava, P., in Scientific Basis for Nuclear Waste Management, Volume 3, edited by Moore, J. G. (Plenum Press, New York, 1980) pp. 123–30.Google Scholar
5. Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W., Major, A., Nature (London), 278, 219 (1979).Google Scholar
6. Morgan, P. D. E., Clarke, D. R., Jantzen, C. M. and Harker, A. B., J. Amer. Ceram. Soc., 64, 249 (1981).Google Scholar
7. Ringwood, A.E., Kesson, S. E. and Ware, N. G., in Scientific Basis for Nuclear Waste Management, Volume 2, edited by Northrup, C. J. M. (Plenum Press, New York, 1980) pp.265–3Google Scholar
8. Sales, B. C. and Boatner, L. A., in Ref. 2, pp. 193–231.Google Scholar
9. Muller, I. S., Buechele, A. C., Pegg, I. L. and Macedo, P. B., in Scientific Basis for Nuclear Waste Management XV, edited by C., Sombret (Materials Research Society, Pittsburgh, PA, USA, 1992) pp. 91–8.Google Scholar
10. Marasinghe, G. K., Karabulat, M., Fang, X., Ray, C. S., Day, D. E., Caulder, D. L., Bucher, J. J., Edelstein, N. M., Shuh, D. K., and Allen, P. G., in Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries V, edited by Chandler, G. T. and X., Feng (American Ceramic Society, Westerville, OH, USA, 2000) pp. 115122.Google Scholar
11. Kim, C-W., Zhu, D. and Day, D. E., in Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries VIII, edited by Sundaram, S. K., Spearing, D. R. and Vienna, J. D. (American Ceramic Society, Westerville, OH, USA, 2003) pp. 329–36.Google Scholar
12. Mukhamet-Galeyev, A. P., Magazina, L. O., Levin, K. A., Samotoin, N. D., Zotov, A. V. and Omelianenko, B.I., in Scientific Basis for Nuclear Waste Management XVIII, edited by T., Murakami and Ewing, R. C. (Materials Research Society, Pittsburgh, PA, USA, 1995) pp. 7986.Google Scholar
13. Demine, A.V., Krylova, N. Y., Poluektov, P. P., Shestoporov, I. N., Smelova, T. Y., Gorn, V. F. and Medvedev, G. M., in Scientific Basis for Nuclear Waste Management XXIV, Eds. Hart, K. P. and Lumpkin, G. R. (Materials Research Society, Warrendale, PA, USA, 2001) pp. 2733.Google Scholar
14. Vance, E. R., Begg, B. D., Day, R. A. and Ball, C. J., in Scientific Basis for Nuclear Waste Management XVIII, Eds. T., Murakami and Ewing, R. C. (Materials Research Society, Pittsburgh, PA, USA, 1995) pp. 767774.Google Scholar
15. Mitamura, H., Matsumoto, S., Tsuboi, T., Vance, E. R. and Begg, B. D., ibid., pp.1405–12.Google Scholar
16. Ewing, R. C., Weber, W. J. and Lian, J., J. Appl. Phys, 95, 5949–71 (2004).Google Scholar
17. Vance, E. R., Jostsons, A., Moricca, S., Stewart, M. W. A., Day, R. A., Begg, B. D., Hambley, M. J., Hart, K. P. and Ebbinghaus, B. B., in Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries IV, edited by Marra, J. C. and Chandler, G. T., (American Ceramic Society, OH, USA, 1999) pp. 323–9.Google Scholar
18. Sickafus, K. E., Minervini, L., Grimes, R. W., Valdez, J. A., Ishimura, M., Li, F., McClellan, K. J. and Hartmann, T., Science, 289, 748 (2000).Google Scholar
19. Lian, J., Chen, J., Wang, L. M., Ewing, R. C., Farmer, J. M., Boatner, L. A. and Helean, K. B., Phys. Rev. B 68, 134107 (2003).Google Scholar
20. Wald, J. W. and Weber, W. J., in Advances in Ceramics, Vol 8, edited by Wicks, G. G. and Ross, W. A. (American Ceramic Society, Columbus, OH, USA, 1984) pp. 71–5.Google Scholar
21. Strachan, D.M., Scheele, R.D., Kozelisky, A.E. and Sell, R.L., Pacific Northwest National Laboratory Report, PNNL-14232 (2003).Google Scholar
22. Begg, B. D., Hess, N. J., McCready, D. E., Thevuthsan, S. and Weber, W. J., J. Nucl. Mater., 289, 189 (2001).Google Scholar
23. Stewart, M. W. A., Begg, B. D., Vance, E. R., Colella, M., Finnie, K., Hart, K. P., Li, H., Lumpkin, G. R., Smith, K. L. and Weber, W. J., in Scientific Basis for Nuclear Waste Management XXV, edited by McGrail, B. P. and Cragnolino, G. A. (Materials Research Society, Warrendale, PA, USA, 2002) pp. 311–8.Google Scholar
24. Yudintsev, S. V., Stefanovsky, S. V., Nikonov, B. S. and Omelianenko, B. I., in Scientific Basis for Nuclear Waste Management XXIV, edited by Hart, K. P. and Lumpkin, G. R. (Materials Research Society, Warrendale, PA, USA, 2001) pp. 357–65.Google Scholar
25. Boyer, L., Carpena, J., Lacout, J. L., Solid State Ionics, 95, 121 (1997).Google Scholar
26. Caurant, D., Majerus, O., Loiseau, P., Bardez, I., Baffier, N. and Dussossoy, J. L., J. Nucl. Mater, 354, 143 (2006).Google Scholar
27. Determining Chemical Durability of Nuclear Hazardous and Mixed Waste Glasses: The Product Consistency Test (PCT), ASTM Designation: C1285-97.Google Scholar
28. Carter, M. L., this meeting.Google Scholar
29. Hayward, P. J., in Ref. 2, pp. 427–93.Google Scholar
30. Kelsey, P. V., Shuman, R. P., Welch, J. M., Owen, D. E. and Flinn, J. E., in Scientific Basis for Nuclear Waste Management, Vol 6, edited by Topp, S. V. (North-Holland, Amsterdam, 1982) pp. 533–40.Google Scholar
31. Day, R. A., Begg, B. D., Moricca, S., Stewart, M. W., Muir, R. and Vance, E.R., WM'05, Tucson, AZ, USA, CD-ROM (2005).Google Scholar
32. Scales, C.R., Maddrell, E.R., Gawthorpe, N., Begg, B.D., Moricca, S., Day, R.A. and Stewart, M.W.A., WM'06, Tucson, AZ, USA, CD-ROM (2006).Google Scholar
33. Li, H., Zhang, Y.. McGlinn, P. J., Moricca, S.. Begg, B. D. and Vance, E. R., J. Nucl. Mater.,355, 136 (2006).Google Scholar