Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T15:04:57.906Z Has data issue: false hasContentIssue false

Development of AlAsSb as a barrier material for ultra-thin-channel InGaAs nMOSFETs

Published online by Cambridge University Press:  28 June 2013

Cheng-Ying Huang
Affiliation:
Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, U.S.A.
Jeremy J. M. Law
Affiliation:
Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, U.S.A.
Hong Lu
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106, U.S.A.
Mark J. W. Rodwell
Affiliation:
Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, U.S.A.
Arthur C. Gossard
Affiliation:
Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, U.S.A. Materials Department, University of California, Santa Barbara, CA 93106, U.S.A.
Get access

Abstract

We investigated AlAs0.56Sb0.44 epitaxial layers lattice-matched to InP grown by molecular beam epitaxy (MBE). Silicon (Si) and tellurium (Te) were studied as n-type dopants in AlAs0.56Sb0.44 material. Similar to most Sb-based materials, AlAs0.56Sb0.44 demonstrates a maximum active carrier concentration around low-1018 cm-3 when using Te as a dopant. We propose the use of a heavily Si-doped InAlAs layer embedded in the AlAsSb barrier as a modulation-doped layer. The In0.53Ga0.47As/AlAs0.56Sb0.44 double heterostructures with a 10 nm InGaAs well show an electron mobility of about 9400 cm2/V・s at 295 K and 32000 cm2/V・s at 46 K. A thinner 5 nm InGaAs well has an electron mobility of about 4300 cm2/V・s at 295 K. This study demonstrates that AlAs0.56Sb0.44 is a promising barrier material for highly scaled InGaAs MOSFETs and HEMTs.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Vurgaftman, I., Meyer, J. R., and Ram-Mohan, L. R., J. Appl. Phys. 89, 5815 (2001).CrossRefGoogle Scholar
Ted Masselink, W., Appl. Phys. Lett. 67, 801 (1995).CrossRefGoogle Scholar
Nakata, Y., Sugiyama, Y., Inata, T., Ueda, O., Sasa, S., Muto, S., and Fujii, T., Mater. Res. Soc. Symp. Proc. 198, 289 (1990).CrossRefGoogle Scholar
Georgiev, N., and Mozume, T., J. Appl. Phys. 89, 1064 (2001).CrossRefGoogle Scholar
Kobayashi, K., Kamata, N., and Suzuki, T., Mater. Res. Soc. Symp. Proc. 56, 61 (1986).CrossRefGoogle Scholar
Bennett, B. R., Moore, W. J., Yang, M. J., and Shanabrook, B. V., J. Appl. Phys. 87, 7876 (2000).CrossRefGoogle Scholar
Bolognesi, C. R., Bryce, J. E., and Chow, D. H., Appl. Phys. Lett. 69, 3531 (1996).CrossRefGoogle Scholar
Bennett, B. R., Yang, M. J., Shanabrook, B. V., Boos, J. B., and Park, D., Appl. Phys. Lett. 72, 1193 (1998).CrossRefGoogle Scholar
Arora, V. K., and Naeem, A., Phys. Rev. B 31, 3887 (1985).CrossRefGoogle Scholar
Price, P. J., Ann. Phys. 133, 217 (1981).CrossRefGoogle Scholar
Ridley, B. K., J. Phys. C 15, 5899 (1982).CrossRefGoogle Scholar
Gold, A., Phys. Rev. B 35, 723 (1987).CrossRefGoogle Scholar
Chattopadyay, D., Phys. Rev. B 31, 1145 (1985).CrossRefGoogle Scholar
Ikarashi, N., Tanaka, M., Sakaki, H., and Ishida, K., Appl. Phys. Lett. 60, 1360 (1992).CrossRefGoogle Scholar
Petroff, P. M., Miller, R. C., Gossard, A. C., and Wiegmann, W., Appl. Phys. Lett. 44, 217 (1984).CrossRefGoogle Scholar
Bolognesi, C. R., Kroemer, H., and English, J. H., Appl. Phys. Lett. 61, 213 (1992).CrossRefGoogle Scholar