Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T23:24:26.571Z Has data issue: false hasContentIssue false

Development of a Single Molecular Tunnel-Current Identification method For Electrical Genome Sequencing

Published online by Cambridge University Press:  09 February 2015

Takahito Ohshiro
Affiliation:
Institute of Science and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, Japan
Makusu Tsutsui
Affiliation:
Institute of Science and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, Japan
Kazumichi Yokota
Affiliation:
Institute of Science and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, Japan
Tomoji Kawai
Affiliation:
Institute of Science and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, Japan
Masateru Taniguchi
Affiliation:
Institute of Science and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, Japan
Get access

Abstract

We developed a tunnel-current based identification method by using nano-gap integrated devices. We performed electrical measurements for mono-nucleotide and oligo-nucleotide during its translocation of molecules between the nano-gap. Based on this determined electrical conductivity for single-nucleotides, we electrically identify the base-type in oligonucleotides, and found that this time-profiles represents the molecular translocation behaviors inside nano-gap. This method could be a promising for an electrical nucleotide sequencing methodology with label-free, high-speed, and low-cost.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Branton, D., Deamer, D. W., Marziali, A., Bayley, H., Benner, S. A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X., Jovanovich, S. B., Krstic, P. S., Lindsay, S., Ling, X. S., Mastrangelo, C. H., Meller, A., Oliver, J. S., Pershin, Y. V., Ramsey, J. M., Riehn, R., Soni, G. V., Tabard-Cossa, V., Wanunu, M., Wiggin, M. & Schloss, J. A. The potential and chal-lenges of nanopore sequencing. Nat. Biotech. 26, 11461153 (2008).CrossRefGoogle Scholar
Schloss, J. A. How to get genomes at one ten-thousandth the cost. Nat. Biotech. 26, 11131115 (2008).CrossRefGoogle ScholarPubMed
Service, R. F.The race for the $1000 genome. Science 311, 15441546 (2006)CrossRefGoogle ScholarPubMed
Ohshiro, T, Tsustui, M, Matsubara, K, Furuhashi, M, Taniguchi, M, Kawai, T. Single-Molecule Electrical Random Resequencing of DNA and RNA. Sci.Rep., 2012;2, 501507 CrossRefGoogle ScholarPubMed
Tsutsui, M., Taniguchi, M., Yokota, K. & Kawai, T. Identifying single nucleotides by tunnelling current. Nat. Nanotechnol. 5, 286290 (2010).CrossRefGoogle ScholarPubMed
Tsutsui, M., Shoji, K., Taniguchi, M. & Kawai, T. Formation and self-breaking mechanism of stable atom-sized junctions. Nano Lett. 8, 345349 (2007).CrossRefGoogle ScholarPubMed
Tsutsui, M., Ohshiro, T., Matsubara, K., Furuhashi, M., Taniguchi, M., Kawai, T., J.Appl.Phys., 108, 064312, (2010).CrossRefGoogle Scholar