Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T03:58:17.977Z Has data issue: false hasContentIssue false

Determination of symmetry reduced structures by a soft-phonon analysis in Ni2MnGa

Published online by Cambridge University Press:  01 February 2011

Tilmann Hickel
Affiliation:
[email protected], Max-Planck-Insitut fuer Eisenforschung GmbH, Computational Materials Design, Max-Planck-Str. 1, Duesseldorf, 40237, Germany, +49(0)211 6792-575, +49(0)211 6792-575
Matthe A. Uijttewaal
Affiliation:
[email protected], Max-Planck-Insitut für Eisenforschung GmbH, Computational Materials Design, Max-Planck-Str. 1, Düsseldorf, 40237, Germany
Blazej Grabowski
Affiliation:
[email protected], Max-Planck-Insitut für Eisenforschung GmbH, Computational Materials Design, Max-Planck-Str. 1, Düsseldorf, 40237, Germany
Jörg Neugebauer
Affiliation:
[email protected], Max-Planck-Insitut für Eisenforschung GmbH, Computational Materials Design, Max-Planck-Str. 1, Düsseldorf, 40237, Germany
Get access

Abstract

The shape memory effect of Ni2MnGa is closely related to the fact that the material undergoes a martensitic phase transition, which results in symmetry reductions and deformations when cooling down. However, there are still substantial uncertainties about the phase diagram in the martensitic phase. Particularly challenging is the determination of those phases, which are characterized by shuffling structures. We have applied density functional theory to this problem, which allows an accurate determination of the potential energy surface as a function of the lattice constants. Based on these results we compute ab initio phonon spectra and discuss in detail how they can be used to extract detailed information about the type of shuffling structures and to systematically and efficiently identify stable atomic configurations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Vasil'ev, A.N., Buchel'nikov, V.D., Takagi, T., Khovailo, V.V, and Estrin, E.I, Phys. Usp. 46, 559 (2003).Google Scholar
2 Brown, P.J, Crangle, J., Kanomata, T., Matsumoto, M., Neumann, K.-U., Ouladdiaf, B., and Ziebeck, K.R.A., J. Phys. : Condens. Matter 14, 10171 (2002).Google Scholar
3 Zayak, A.T, Adeagbo, W.A, Entel, P., Buchelnikov, V.D, Phase Trans. 78, 259 (2005).Google Scholar
4 Neumann, K., Neumann, K.-U., Ziebeck, K.R.A., private communicationGoogle Scholar
5 Blöchl, P.E., Phys. Rev. B 50, 17953 (1994).Google Scholar
6 Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
7 Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).Google Scholar
8 Perdow, J.P, Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
9 Monkhorst, H.J and Pack, J.D, Phys. Rev. B 13, 5188 (1976).Google Scholar
10 Perez-Mato, J.M., Blaha, P., Parlinski, K., Schwarz, K., Aroyo, M., Elcoro, L., and Izaola, Z., Int. Ferroelectrics 62, 183 (2004).Google Scholar
11 Murnaghan, F.D, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).Google Scholar
12 Zayak, A.T et al. , Phys. Rev. B 68, 132402 (2003).Google Scholar
13 Zheludev, A., Shapiro, S.M, Wochner, P., and Tanner, L.E, Phys. Rev. B 54, 15045 (1996).Google Scholar
14 Lee, Y., Rhee, J.Y, and Harmon, B.N, Phys. Rev. B 66, 054424 (2002).Google Scholar