Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T04:05:13.659Z Has data issue: false hasContentIssue false

Determination of Boron Concentration in Doped Diamond Films

Published online by Cambridge University Press:  02 March 2011

S.N. Demlow
Affiliation:
Michigan State University, Electrical and Computer Eng., East Lansing, MI 48824, U.S.A.
T.A. Grotjohn
Affiliation:
Michigan State University, Electrical and Computer Eng., East Lansing, MI 48824, U.S.A. Fraunhofer USA Center for Coatings and Laser Applications, East Lansing, MI 48824, U.S.A.
T. Hogan
Affiliation:
Michigan State University, Electrical and Computer Eng., East Lansing, MI 48824, U.S.A.
M. Becker
Affiliation:
Fraunhofer USA Center for Coatings and Laser Applications, East Lansing, MI 48824, U.S.A.
J. Asmussen
Affiliation:
Michigan State University, Electrical and Computer Eng., East Lansing, MI 48824, U.S.A. Fraunhofer USA Center for Coatings and Laser Applications, East Lansing, MI 48824, U.S.A.
Get access

Abstract

The electrical characteristics of high quality single crystal boron-doped diamond are studied. Samples are synthesized in a high power-density microwave plasma-assisted chemical vapor deposition (CVD) reactor at a pressure of 160 Torr. The boron-doped diamond films are grown using diborane in the feedgas at concentrations of 0-0.25 ppm, and are compared to those grown previously with 1-10 ppm. The boron acceptor concentration is investigated using infrared absorption, and compared to the boron concentration obtained by SIMS. A four point probe is used to study the conductivity. The temperature dependent conductivity is analyzed to determine the boron dopant activation energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nicley, S.S. (Demlow, S.N.), Tran, D., Fansler, C., Reinhard, D.K., Grotjohn, T.A., Liebich, J., Pieper, C., Becker, M., Asmussen, J., 2009 New Diam. and Nano Carb. Conf. Google Scholar
2. Grotjohn, T.A., Nicley, S.S. (Demlow, S.N.), Tran, D., Reinhard, D.K., Becker, M., Asmussen, J. 2009 MRS Fall Meet, Paper#1203-J17-17 Google Scholar
3. Ramamurti, R., Becker, M., Schuelke, T., Grotjohn, T., Reinhard, D. and Asmussen, J., Diam. & Rel. Mater. 17, (2008) 1320.Google Scholar
4. Ramamurti, R., Becker, M., Schuelke, T., Grotjohn, T., Reinhard, D., Swain, G., Asmussen, J., Diam. & Rel. Mater. 17, (2008) 481.Google Scholar
5. Ramamurti, R., Becker, M., Schuelke, T., Grotjohn, T., Reinhard, D. and Asmussen, J., Diam. & Rel. Mater. 18, (2009) 704.Google Scholar
6. Kuo, K.P. and Asmussen, J., Diam. Rel. Mater. 6, (1997) 1097.Google Scholar
7. Smits, F.M., The Bell System Technical Journal (May 1958) 711.Google Scholar
8. Valdes, L.B., Proc. IRE. 42, (Feb. 1954) 420.10.1109/JRPROC.1954.274680Google Scholar
9. Gheeraert, E., Koizumi, S., Teraji, T., Kanda, H. and Nesládek, M., Phys. Stat. Sol. 174 (1999) 39.Google Scholar
10. Teraji, T., Phys. Stat. Sol. 203 (2006) 3324.Google Scholar
11. van der Pauw, L.J.. Philips Res. Repts. 13, (1958) 1.Google Scholar
12. Smith, D. and Taylor, W.. Proc Phys. Soc. 79, (1962) 1142.10.1088/0370-1328/79/6/307Google Scholar
13. Thonke, K., Semicond. Sci. Technol. 18, (2003) S20.Google Scholar
14. Gheeraert, E., Deneuville, A. and Mambou, J., Diam. Relat. Mater. 7 (1998) 1509.Google Scholar
15. Collins, A.T. and Williams, A.W.S., J. Phys. C.: Solid St. Phys., 4, (1971) 1789.Google Scholar
16. von Windheim, J.A., Venkatesan, V., Malta, D.M., and Das, K., J. Electron. Mater. 22, (1993) 391.Google Scholar
17. Visse, E.P., Bauhuis, G.J., Janssen, G., Vollenberg, W., van Enckevort, J.P. and Giling., L.J. , J. Phys. Condens. Matter. 4, (1992) 7365.Google Scholar
18. Pearson, G.L. and Bardeen, J., Phys. Rev, 75, (1949) 865.Google Scholar
19. Borst, T.H. and Weis, O. Diam. & Rel. Mater. 4, (1995) 948.Google Scholar
20. Kadri, M., Araujo, D., Wade, M., Deneuville, A., Bustarret, E., Diam. & Rel. Mater. 14 (2005) 566 Google Scholar
21. Volpe, P.N., Pernot, J., Muret, P., Omnès, F., Appl. Phys. Lett. 94 (2009) 092102 Google Scholar