Article contents
Design, Synthesis and Characterization of Precursors for Chemical Vapor Deposition of Oxide-Based Electronic Materials
Published online by Cambridge University Press: 10 February 2011
Abstract
Ferroelectric and other high dielectric constant metal oxides currently are sought-after for a variety of applications in the electronics industry. To meet the demand of preparation of these interesting materials in a manner compatible with traditional silicon-based fabrication procedures, chemical vapor deposition routes are desired for film growth. Compounds displaying high vapor phase stability are necessary as precursors for these applications. Additionally, in general, it is preferred to utilize compounds in a liquid state, due to the more rapid re-establishment of equilibrium at a liquid-vapor interface, compared to that present at a solid-vapor interface. This combination of desired molecular properties, in turn, presents a great challenge to the coordination chemist. Several of the metals of interest for these uses reside in groups 2–5. Common design features are emerging for the ligands best suited for attachment to these metals for subsequent utilization in the deposition of metal oxides. In order to achieve coordinative saturation of the relatively high ionic radii exhibited by most of these elements, multidentate, monoanionic ligands are relied upon. In the past, most often, homoleptic ligand sets have been employed, thereby reducing the chance for ligand scrambling to occur during the growth process. Such disproportionation processes have been credited, in previous work, with the observation of a temporal decay in vapor pressure of heteroleptic compounds. In some interesting new developments, it has been found that heteroleptic compounds possess sufficient vapor phase integrity to permit their evaluation as CVD precursors. These, and related, results are presented herein.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2000
References
- 4
- Cited by