Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T03:16:51.207Z Has data issue: false hasContentIssue false

Design of Metal-Semiconductor-Metal Ultra-Violet Detector on Gallium Nitride

Published online by Cambridge University Press:  21 March 2011

Wenhua Gu
Affiliation:
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119260
Soo Jin Chua
Affiliation:
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119260
Xin Hai Zhang
Affiliation:
Institute of Materials Research and Engineering, Singapore 117602
Get access

Abstract

The design of Gallium Nitride based Metal-Semiconductor-Metal Ultra-Violet detector is discussed. We introduce a simulation model using Medici to describe the performances of such detectors. Structure parameters, such as the inter-digitated electrode dimension and the GaN layer thickness, are optimized for response current and time using this model. The simulation results can be explained by the variation of depletion region. We introduce the “effective electric field intensity” to describe the depletion region. The relationship between the “effective electric field intensity” and structure parameters are simulated and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Monroy, E., Cale, F., Munoz, E., and Omnes, F., Appl. Phys. Lett. 74, 3401(1999)Google Scholar
2. Walker, D., Monoy, E., Kung, P., Wu, j., Hamilton, M., Sanchez, F.J., Diaz, J., and Razeghi, M., Appl. Phys. Lett. 74, 762(1999)Google Scholar
3. Carrano, J.C., Li, T., Brown, D.L., Grudowski, P.A., Eiting, C.J., Dupuis, R.D., and Campbell, J.C., Appl. Phys. Lett. 73, 2405(1998).Google Scholar
4. Smith, G.M., Redwing, J.M., Vaudo, R.P., Ross, E.M., Flynn, J.S., and Phanse, V.M., Appl. Phys. Lett. 75, 25(1999).Google Scholar
5. Carrano, J.C., Li, T., Grudowski, P.A., Eiting, C.J., Dupuis, R.D., and Campbell, J.C., J. Appl. Phys. 83, 6148(1998).Google Scholar
6. Carrano, J.C., Li, T., Grudowski, P.A., Eiting, C.J., Dupuis, R.D., and Campbell, J.C., Appl. Phys. Lett. 72, 542(1998).Google Scholar
7. Joshi, R.P., Dharamsi, A.N., and McAdoo, J., Appl. Phys.Lett. 64, 3611(1994).Google Scholar
8. Hoshi, R.P., J. Appl. Phys. 76, 4434(1994).Google Scholar
9. Razeghi, M., and Rogalski, A., Applied Physics Reviews 79, 7433, (1996).Google Scholar
10. Pearton, S.J., Zolper, J.C., Shul, R.J., and Ren, F., Applied Physics Reviews 86, 1(1999).Google Scholar