Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:56:29.551Z Has data issue: false hasContentIssue false

Design and Synthesis of New Acceptor Molecules for Photo-Induced Electron Transfer Reverse Saturable Absorption

Published online by Cambridge University Press:  21 March 2011

M. Bader
Affiliation:
Department of Chemistry, Pennsylvania State University-Hazleton, Hazleton, PA 18201
J. Moser
Affiliation:
Department of Chemistry, Pennsylvania State University-Hazleton, Hazleton, PA 18201
H. Li
Affiliation:
Scientific Materials Corp., 310 Icepond Rd., P.O. Box 786, Bozeman, MT 59715
S. Tarter
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717, [email protected]
C. Spangler
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717, [email protected]
Get access

Abstract

With the advent of efficient and relatively inexpensive pulsed and CW laser systems for both civilian and military applications, the need for adequate eye and sensor protection is becoming increasingly important. While it is possible to filter out harmful wavelengths if the laser frequency is known, the proliferation of frequency agile laser sources underscores the need for “smart” passive materials that can sense the incident wavelength and provide protection. There has been considerable progress made in recent years in the design of optical power limiting (OPL) materials that can function by a variety of mechanisms, most of which derive their limiting behavior from some type of nonlinear absorption process. The most well-studied of these processes involve excited state absorption in which the absorption cross-sections of the photo-generated transient species are much greater than the original S0 to S1 transition. In this presentation we will discuss the efficacy of charge transfer species for optical limiting, and the need for more and better electron acceptor species.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Spangler, C. W., J. Mater. Chem. 9, p. 2013 (1999).Google Scholar
2. Spangler, C. W., McCoy, R. K., Dembek, A. A., Sapochak, L. and Gates, B. D., J. Chem. Soc. Perkin Trans. 1, p. 151 (1989).Google Scholar
3. Spangler, C. W., Liu, P.-K., Dembek, A. A. and Havelka, K. O., J. Chem. Soc. Perkin Trans. 1, p.799 (1991).Google Scholar
4. Spangler, C. W. and He, M. Q., J. Chem. Soc. Perkin Trans. 1, p. 715 (1995).Google Scholar
5. Spangler, C. W. and He, M. Q., in Handbook of Conductive Molecules and Polymers: Vol.2. Conductive Polymers: Syntyhesis and Electrical Properties, edited by Nalwa, H. S., John Wiley and Sons, Ltd., Chichester, 1997, pp. 389414.Google Scholar
6. Spangler, C. W. and He, M. Q., Mat. Res. Soc. Symp. Proc. 479, p. 59 (1997).Google Scholar
7. Saraciftci, N. S. and Heeger, A. J., in Handbook of Organic Conductive Molecules and Polymers: Vol. 1. Charge-Transfer Salts, Fullerenes and Photoconductors, edited by Nalwa, H. S., John Wiley and Sons, Ltd., Chichester, 1997, pp. 414455.Google Scholar
8. Tott, L. W. and Kost, A., Nature 356, p. 225 (1992).Google Scholar
9. Henari, F., Callaghan, J., Stiel, H., Blau, W. and Cardun, D. J., Chem. Phys. Lett. 199, p. 144 (1992).Google Scholar
10. McLean, D. J., Sutherland, R. L., Brant, M. C., Brandelik, D. M., Fleitz, P. A. and Pottenger, T., Opt. Lett. 18, p. 858 (1993).Google Scholar
11. Saraciftci, N. S., Smilowitz, L., Heeger, A. J. and Wudl, F., Science 258, p. 1474 (1992).Google Scholar
12. Janssen, R. A. J., Moses, D. and Saraciftci, N. S., J. Chem. Phys. 101, p. 9519 (1994).Google Scholar
13. Janssen, R. A. J., Christiaans, M. P. T., Hare, C., Martin, N., Saraciftci, N. S., Heeger, A. J. and Wudl, F., J. Chem. Phys. 103, p. 8840 (1995).Google Scholar
14. Janssen, R. A. J., Christiaans, M. P. T., Pakbaz, K., D, Moses, Hummelen, J. C. and Saraciftci, N. S., J. Chem. Phys. 102, p. 2628 (1995).Google Scholar
15. Elandaloussi, E. H. and Spangler, C. W., Polym. Preprints 39(2), p. 1055 (1998).Google Scholar
16. Sonnenberg, W., Hyfield, A., Short, K., Spangler, L. and Spangler, C., Mat. Res. Soc. Symp. Proc. (submitted).Google Scholar