Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T23:54:20.422Z Has data issue: false hasContentIssue false

Deposition of A-Ge:H by Gef4/H 2 Glow Discharge

Published online by Cambridge University Press:  25 February 2011

D. Slobodin
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
S. Aljishi
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
S. Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
Get access

Abstract

Hydrogenated amorphous germanium (a-Ge:H) thin films have been grown by DC proximity glow discharge deposition using GeF,/H2 as the source gas mixture. The film growth rate decreases with increasing substrate temperature because of the temperature activation of the competitive “etching” reaction: GeF, + Ge -2GeF 2. At sufficiently high substrate temperature and GeF4, partial pressure, this reaction dominates and film growth is suppressed. The hydrogen fraction in the source gas mixture appears to determine the extent of decomposition of GeF4. The deposition rates of germanium films grown from SiF4/GeF4/H2 and Ar/GeF4,/H2 under similar gas fraction and discharge power conditions are compared. The results suggest that Si species catalyze the deposition of Ge in SiF4/GeF4/H2 glow discharges. a-Ge:H films grown from GeF4/H2 have optical, electronic and structural properties similar to films grown by GeH, glow discharge.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRENCES

1. Hamakawa, Y. and Okamoto, H., Amorphous Semiconductor Technologies and Devices, edited by Hamakawa, , (North Holland, New York, 1984), JARECT 16, 100.Google Scholar
2. Oda, S., Shirai, H., Tanabe, A., Hanna, J., and Shimizu, I., to be published.Google Scholar
3. Nozawa, K., Yamaguchi, Y., Hanna, J., and Shimizu, I., J. Non-Cryst. Solids, 59 & 60, 533, (1983).Google Scholar
4. MacKenzie, K.D., Hanna, J., Eggert, J.R., Li, Y.M., Sun, Z.L., and Paul, W., J. Non-Cryst. Solids, 77&78, 881, (1985).Google Scholar
5. Nakano, S., Kishi, Y., Ohnishi, M., Tsuda, S., Shibuya, H., Nakamura, N., Hishikawa, Y., Tarui, H., Takahama, T., and Kuwano, Y., Mat. Res. Soc. Symp. Proc., 49, 275, (1985).Google Scholar
6. Slobodin, D., Kolodzey, J., Aljishi, S., Okada, Y., Chu, V., Shen, D.-S., Schwarz, R., and Wagner, S., Proc. 18th IEEE Photovoltaic Specialists Conf., 1505, (1985).Google Scholar
7. Slobodin, D., Aljishi, S., Schwarz, R., and Wagner, S., Mat. Res. Soc. Symp. Proc., 49, 153, (1985).Google Scholar
8. Madan, A., Ovshinsky, S.R., and Benn, E., Phil. Mag. B, 40, 259, (1979).Google Scholar
9. Bartlett, N. and Yu, K.C., Can. J. Chem., 39, 80, (1961).Google Scholar
10. Glockling, F., The Chemistry of Germanium, (Academic Press, New York, 1969).Google Scholar
11. Janai, M., Aftergood, S., Weil, R.B., and Pratt, B., J. Electrochem. Soc., 128, 2662, (1981).Google Scholar
12. Schwarz, R., Okada, Y., Chou, S.F., Kolodzey, J., Slobodin, D., and Wagner, S., Mat. Res. Soc. Symp. Proc., 70, 283, (1986).Google Scholar
13. Ross, R.C., Chao, S.S., Tyler, J.E., and Czubatyj, W., J. Vac. Sci. Tech A. 3(3), 958, (1985).Google Scholar
14. Payson, J.S., Ross, R.C., J. Non-Cryst. Solids, 77 & 78, 579, (1985).Google Scholar
15. Lucovsky, G., Chao, S.S., Yang, J., Tyler, J.E., Ross, R.C., and Czubatyj, W., Phys. Rev. B, 31(4), 2190, (1985).Google Scholar
16. Fang, C.J., Gruntz, K.J., Ley, L., and Cardona, M., J. Non-Cryst. Solids, 35 & 36, 255, (1980).Google Scholar
17. Slobodin, D., Doctoral Dissertation, Princeton University, (January, 1987).Google Scholar
18. Shen, D.S., Kolodzey, J., Slobodin, D., Conde, J.P., Lane, C., Cambell, I.H., Fauchet, P.M., and Wagner, S., Mat. Res. Soc. Symp. Proc., 70, 301, (1986).Google Scholar
19. Matsuda, A., Matsumura, M., Nakagawa, K., Yamasaki, S., and Tanaka, K., J. de Physique, 42, C4, 1981.Google Scholar
20. Truesdale, E.A. and Smolinsky, G., J. Appl. Phys. 50(11), 6594, (1979).Google Scholar
21. Flamm, D.L., Chang, C.-P., Ibbotson, D.E., and Mucha, J.A., Solid State Tech., March 1987, 43.Google Scholar
22. CRC Handbook of Chemistry and Physics, 59th ed., (CRC Press, West Palm Beach, FL, 1978).Google Scholar
23. Adams, G.P., Charlu, T.V., and Margrave, J.L., J. Chem. and Eng. Data, 15(1), 42 (1970).Google Scholar
24. Wang, L.-F., Margrave, J.L., and Franklin, J.L., J. Chem. Phys., 60(5), 2158, (1974).Google Scholar
25. Adams, G.P., Margrave, J.L., and Wilson, P.W., J. Chem. Thermodynamics, 2, 741, (1970).Google Scholar
26. Oda, S., Takagi, S., Ishihara, S., and Shimizu, I., in Tetrahedrally-Bonded Amorphous Semiconductors, edited by Adler, D. and Fritzsche, H. (Plenum Press, New York, 1985), 379.Google Scholar
27. Walsh, R., Chem. Soc. Faraday Trans. 1, 79, 2233, (1983).Google Scholar
28. MacKenzie, K.D., Harvard University, personal communication.Google Scholar
29. Dalal, V.L., Fortmann, C.M., and Eser, E., in Tetrahedrally Bonded Amorphous Semiconductors, edited by Street, R.A., Biegelsen, D.K., and Knights, J.C., (American Institute of Physics, New York, 1981), 15.Google Scholar