Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T21:02:49.024Z Has data issue: false hasContentIssue false

Depositing Metals into Porous Silicon - the Impact on Luminescence

Published online by Cambridge University Press:  28 February 2011

P. Steiner
Affiliation:
Fraunhofer Institute for Solid State Technology, Hansastrasse 27d, D-80686 Munich, Germany Phone: +49/89/54759-198, Fax: +49/89/54759-100, E-Mail: [email protected]
F. Kozlowski
Affiliation:
Fraunhofer Institute for Solid State Technology, Hansastrasse 27d, D-80686 Munich, Germany Phone: +49/89/54759-198, Fax: +49/89/54759-100, E-Mail: [email protected]
W. Lang
Affiliation:
Fraunhofer Institute for Solid State Technology, Hansastrasse 27d, D-80686 Munich, Germany Phone: +49/89/54759-198, Fax: +49/89/54759-100, E-Mail: [email protected]
Get access

Abstract

Indium, tin, antimony and aluminum are deposited by an electrochemical process into the pores of n-type porous silicon which is anodized with ultraviolet light applied during formation. The presence of these metal atoms in the porous layer is checked by electron microprobe measurement. As reported previously, UV-light etched material shows red photoluminescence (630 nm) and blue electroluminescence (470 nm) without the metal treatment. After metal deposition the photoluminescence intensity decreases slightly (factor 0.5 - 0.8), whereas the spectral position remains constant. The electroluminescence efficiency is significantly enhanced by indium, aluminum and tin in the pores (factor 5 - 90). The tin and antimony treatment causes a red shift to 580 nm and 740 nm, respectively. The conductivity is slightly increased by all kinds of metals by a factor 2-5.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Richter, A., Steiner, P., Kozlowski, F., Lang, W., IEEE Electron Device Lett. 12, 691 (1991).Google Scholar
2 Koshida, N., Koyama, H., Appl. Phys. Lett. 60, 347 (1992).Google Scholar
3 Namavar, F., Maruska, H. P., Kalkhoran, N. M., Appl. Phys. Lett. 60, 2514 (1992).Google Scholar
4 Futagi, T., Matsumoto, T., Katsuno, M., Ohta, Y., Nimura, H., Kitamura, K., Jpn. J. Appl. Phys. 31, L616 (1992).Google Scholar
5 Chen, Z., Bosman, G., Ochoa, R., Appl. Phys. Lett. 62 (7), 708 (1993).Google Scholar
6 Steiner, P., Kozlowski, F., Lang, W., Appl. Phys. Lett. 62, 2700 (1993).Google Scholar
7 Steiner, P., Kozlowski, F., Lang, W., IEEE Electron Device Lett. 14, 317 (1993).Google Scholar
8 Steiner, P., Kozlowski, F., Lang, W., to be published in Jpn. J. Appl. Phys. 33 (1994)Google Scholar
9 Maruska, H. P., Namavar, F., Kalkhoran, N. M., Appl. Phys. Lett. 61, 1338 (1992).Google Scholar
10 Steiner, P., Lang, W., Kozlowski, F., Sandmaier, H. in Silicon-Based Optoelectronic Materials, edited by Tischler, M. A., Collins, R. T., Thewald, M. L. W., and Abstreiter, G. (Mater. Res. Soc. Proc. 298, Pittsburgh, PA, 1993) pp. 397.Google Scholar
11 Kozlowski, F., Sauter, M., Steiner, P., Lang, W., Thin Solid Films 222, 196 (1992)Google Scholar
12 Voos, M., Uzan, P., Delalunde, C., Gaspard, G., Halimaoui, A., Appl. Phys. Lett. 61 (10), 1213 (1993).Google Scholar