Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T02:40:16.307Z Has data issue: false hasContentIssue false

Dependence on Collision Time of Particle Ejection of Atom-Bombarded Single-Crystal Surfaces

Published online by Cambridge University Press:  21 February 2011

Che-Chen Chang
Affiliation:
Department of Chemistry, National Taiwan University, Taipei, Taiwan, R.O.C.
Shi-Wei Wang
Affiliation:
Department of Chemistry, National Taiwan University, Taipei, Taiwan, R.O.C.
Get access

Abstract

Ejection properties of particles emitted from a keV-atom-bombarded Ag{100} surface are calculated using classical dynamics to model the energy dissipation process. The ejection behavior of the sputtered particles depends strongly on the time interval between the instant of the primary impact on the surface and the moment when the emitting surface atom passes the cutoff boundary of the interaction potential. Both the sputtered neutrals and ions have a similar collision-time distribution. Most particles eject from the surface within 350 fsec after the primary impact. The sputter intensity maximized at around 145 fsec. For particles leaving the surface after -100 fsec of the primary impact, the preferred azimuths of ejection are not sensitive to the collision time. The angular distribution of sputtered particles is less dependent of the collision time than of the ejection energy. The angular anisotropy is also significantly enhanced at high collision times. The results find applications in the characterization and imaging of material surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Srivastava, D., Garrison, B. J., Brenner, D. W., Phys. Rev. Lett. 63 (1989) 302.Google Scholar
2 Schoolcraft, T. A., Garrison, B. J., J. Am. Chem. Soc. 113 (1991) 8221.Google Scholar
3 Blumenthal, R., Caffey, K. P., Furman, E., Garrison, B. J., Winograd, N., Phys. Rev. B44 (1991) 12830.Google Scholar
4 Collari, E., Visser, R. J., Surf. Sci. 218 (1989) L497.Google Scholar
5 Neave, J. H., Joyce, B. A., Cryst., J. Growth 44 (1978) 387.Google Scholar
6 Winograd, N., Garrison, B. J., in “Ion Spectroscopies for Surface Analysis”, eds. Czanderna, A. W., Hercules, D., Plenum Press, 1991, p. 45-141.Google Scholar
7 Chang, C.-C., Phys. Rev. B48 (1993) 12399Google Scholar
8 Schuhle, U., Pallix, J. B., Becker, C. H., J. Am. Chem. Soc. 110 (1988) 2323.Google Scholar
9 Terhorst, M., Mollers, R., Niehuis, E., Benninghoven, A., Surf. Interface Anal. 18 (1992) 824.Google Scholar
10 Dyer, M. J., Jusinski, L. E., Helm, H., Becker, C., Appi. Surf. Sci. 52 (1991) 151.Google Scholar
11 Harrison, D. E. Jr., Crit. Rev. Sol. St. Mater. Sci. 14, S1 (1988).Google Scholar
12 Molière, G., Naturi, S. 2A, 133 (1947).Google Scholar
13 Firsov, O. B., JETP (Sov. Phys.) 6, 534 (1958).Google Scholar
14 Chang, C.-C., Winograd, N., Phys. Rev. B39, 3467 (1989).Google Scholar
15 Chang, C.-C., Chen, H. H., Wu, P., Mat. Res. Soc. Symp. Proc. in print.Google Scholar
16 Yu, M. L., Phys. Rev. Lett. 47 (1981) 1325.Google Scholar
17 Garrett, R. F., MacDonald, R. J., O'Connor, D. J., Nucl. Instr. Meth. 218 (1983) 333.Google Scholar
18 Lundquist, T. R., J. Vac. Sci. Technol. 15 (1978) 684.Google Scholar
19 Terhorst, M., Mollers, R., Niehuis, E., Benninghoven, A., Surf. Interface Anal. 18 (1992) 824.Google Scholar
20 Brummel, C. L., Willey, K. F., Vickerman, J. C., Winograd, N., Int. J. Mass Spectr. Ion Process 143 (1995) 257.Google Scholar