Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T03:59:28.150Z Has data issue: false hasContentIssue false

Dependence of Electro-Optic Effects on the Orientations of Epitaxial LiNbO3 Films

Published online by Cambridge University Press:  15 February 2011

See-Hyung Lee
Affiliation:
Department of Physics and Condensed Matter Research Institute, Seoul National University, Seoul 151–742, Korea
T. W. Noh
Affiliation:
Department of Physics and Condensed Matter Research Institute, Seoul National University, Seoul 151–742, Korea
Jai-Hyung Lee
Affiliation:
Department of Physics and Condensed Matter Research Institute, Seoul National University, Seoul 151–742, Korea
Get access

Abstract

Epitaxial LiNbO3 films were grown on a-cut sapphire, i.e., α-A12O3(0112), substrates by pulsed laser deposition. It is found the oxygen pressure is an important deposition parameter to influence the orientations of the LiNbO3 films. At an oxygen pressure of 10−1 torr, LiNbO3(0001) film was grown epitaxially. And, at a low oxygen pressure (i.e., 5x10−4 torr), LiNbO3(1120) film was grown epitaxially. Due to the anisotropic electro-optic (EO) constants, these films with the different orientations display large differences in their EO properties: the epitaxial LiNb3(0001) film shows little EO effects, but the LiNbO3(1120) film shows a large quadratic EO behavior with an effective coefficient of 2.38×10−5 m2/V2. The dependence of EO effects on the orientations of the epitaxial films was analyzed in terms of the linear and quadratic EO tensors of LiNbO3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Camera, A., in Electro-Optical and Photorefractive Materials, edited by Günter, P. (Springer Verlag, Berlin, 1987).Google Scholar
2. Rost, T. A., Rabson, T. A., Stone, B. A., Callahan, D. L., and Baumann, R. C., IEEE Trans. Ultrason. Ferro. Freq. Cont. 38, 640 (1991).Google Scholar
3. Fujimura, N., Kakinoki, M., Tsuboi, H., and Ito, T., J. Appl. Phys. 75, 2169 (1994).Google Scholar
4. Wernberg, A. A. and Gysling, H. J., Appl. Phys. Lett. 62, 946 (1993).Google Scholar
5. Josh, V., Roy, D., and Mecartney, L., Appl. Phys. Lett. 63, 1331 (1993).Google Scholar
6. Yamada, A., Tamada, H., and Saitoh, M., Appl. Phys. Lett. 61, 2848 (1992).Google Scholar
7. Fork, D. K. and Anderson, G. B., Appl. Phys. Lett. 63, 1029 (1993).Google Scholar
8. Shibata, Y., Kaya, K., Akashi, K., Kanai, M., Kawai, T., and Kawai, S., J. App. Phys. 77, 1498 (1995).Google Scholar
9. Lee, S.-H., Song, T. K., Noh, T. W., and Lee, J.-H., Appl. Phys. Lett. 67, 43 (1995).Google Scholar
10. Song, T. K., Ryu, M. S., Noh, T. W., and Kwun, S.-I., J. Kor. Phys. Soc. 27, S65 (1994).Google Scholar
11. Jo, W., Cho, H-J., Noh, T. W., Kim, B. I., Kim, D-Y., Khhn, Z. G., and Kwun, S.-I., Appl. Phys. Lett. 63, 2198 (1993).Google Scholar
12. Adachi, H., Kawaguchi, T., Setsune, K., Ohji, K., and Wasa, K., Appl. Phys. Lett. 42, 867 (1983); IEEE Trans. Ultrason. Ferro. Freq. Cont. 38, 645 (1991).Google Scholar
13. Graettinger, T. M., Rou, S. H., Ameen, M. S., Auciello, O., and Kingon, A. I., Appl. Phys. Lett. 58, 1964 (1991).Google Scholar
14. Griffel, G., Ruschin, S., and Croitoru, N., Appl. Phys. Lett. 54, 1385 (1989).Google Scholar
15. Huang, H.-J., Integrated Ferroelectrics 6, 355 (1995).Google Scholar
16. Ramer, C. G., J. Quantum Electronics 18, 386 (1982).Google Scholar
17. Yariv, A. and Yeh, P., Optical Waves in Crystals (Jone Wiely & Sons, New York, 1984), p. 228 and p. 259.Google Scholar
18. Alexakis, G., Theofanous, N., Arapoyianni, A., Aillerie, M., Carabatos-Nedelec, C., and Fontana, M., Optical and Quantum Electronics 26, 1043 (1994).Google Scholar
19. Miller, R. C. and Savage, A., Appl. Phys. Lett. 9,169 (1966); Y. Takagi and K. Gesi, Jpn. J. Appl. Phys. 5, 1118 (1966).Google Scholar