Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T03:24:12.115Z Has data issue: false hasContentIssue false

The Density of States in a-Si:C:H Revealed by Electrophotography

Published online by Cambridge University Press:  01 January 1993

R.A.C.M.M. Van Swaaij
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P. O. Box 80.000, NL-3508 TA Utrecht, The Netherlands
W.P.M. Willems
Affiliation:
Stork Colorproofing B.V., P. O. Box 80.000, NL-5830 AE Boxmeer, The Netherlands
J. Bezemer
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P. O. Box 80.000, NL-3508 TA Utrecht, The Netherlands
M.B. Von Der Linden
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P. O. Box 80.000, NL-3508 TA Utrecht, The Netherlands
W.F. Van Der Weg
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P. O. Box 80.000, NL-3508 TA Utrecht, The Netherlands
Get access

Abstract

Electrophotographic dark decay measurements have been used to determine the surface density of states (SDOS) of a-Si:C:H. Injection of trapped charge from these deep states into the conduction band governs the dark discharge of a photoconductor, provided bulk generation and bulk space charge are negligible. It is found that the SDOS profiles peak around 0.60 eV below the conduction band for materials with different carbon concentration. This observation implies that the energy position of these states is fixed with respect to the conduction band edge, even though the optical band gap of these materials increases with increasing carbon concentration. The nature of these states may be ascribed to D states, whose density is strongly enhanced by filling D° states when the material is charged negatively. Furthermore, we observed that the SDOS around 0.60 eV below the conduction band edge is approximately the same for materials with up to 8 at.% carbon. From temperature dependent measurements a value of 2·108 s−1 was obtained for the attempt-to-escape frequency.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schaffert, R., Electrophotography, (Focal Press, 1975) p. 397.Google Scholar
2. Paasche, S. M. and Bauer, G. H. in Materials Issues in Amorphous Semiconductor Technology, edited by Adler, D., Hamakawa, Y. and Madan, A. (Mat. Res. Soc. Symp. Proc. 70, Pittsburgh, PA, 1986) pp. 671677.Google Scholar
3. Kasap, S. O., J. Phys. D, 297, 841 (1988).Google Scholar
4. Herremans, H., Grevendonk, W., van Swaaij, R. A. C. M. M., van Sark, W. G. J. H. M., Berntsen, A. J. M., Arnold Bik, W. B. and Bezemer, J., Philos. Mag. B, 66, 787 (1992).Google Scholar
5. von der Linden, M. B., Schropp, R. E. I., Balkema, R., van Swaaij, R. A. C. M. M., Daey Ouwens, J., van Sark, W. G. J. H. M., Bezemer, J. and van der Weg, W. F. in Proc. of the 11th E. C. Photovoltaic Solar Energy Conference, Montreux, 1992, edited by Guimarães, L., Palz, W., de Reyff, C., Kiess, H. and Helm, P., (Harwood Academic Publishers, Switzerland), pp. 647650.Google Scholar
6. Stoddart, H. A., Vardeny, Z. and Tauc, J., Phys. Rev. B 38, 1362 (1988).Google Scholar
7. Grevendonk, W., Verluyten, M., Dauwen, J., Adriaenssens, G. J. and Bezemer, J., Philos. Mag. B, 61, 393 (1990).Google Scholar