Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T13:29:56.974Z Has data issue: false hasContentIssue false

Dendritic Iridium(III)-Encapsulated Complexes for Organic Light Emitting Diodes

Published online by Cambridge University Press:  26 February 2011

Ho-Jin Son
Affiliation:
[email protected], Korea University, Advanced material chemistry, Korea University, 208 Seochang, Chochiwon, chung-nam, 339-700, Korea, Republic of
Won-Sik Han
Affiliation:
[email protected], Korea University, Advanced Material Chemistry, 208 Seochang, Jochiwon, 339-700, Korea, Republic of
Kyu-Bum Choi
Affiliation:
[email protected], Korea University, Advanced Material Chemistry, 208 Seochang, Jochiwon, 339-700, Korea, Republic of
Dae-Hyun Kim
Affiliation:
[email protected], Korea University, Advanced Material Chemistry, 208 Seochang, Jochiwon, 339-700, Korea, Republic of
Jaejung Ko
Affiliation:
[email protected], Korea University, Advanced Material Chemistry, 208 Seochang, Jochiwon, 339-700, Korea, Republic of
Seung-Uk Noh
Affiliation:
[email protected], Seoul National University, Electrical Engineering and Computer Science, Shillim-dong, Gwanak-gu, Seoul, 151-744, Korea, Republic of
Changhee Lee
Affiliation:
[email protected], Seoul National University, Electrical Engineering and Computer Science, Shillim-dong, Gwanak-gu, Seoul, 151-744, Korea, Republic of
Sang Ook Kang
Affiliation:
[email protected], Korea University, Advanced Material Chemistry, 208 Seochang, Jochiwon, 339-700, Korea, Republic of
Get access

Abstract

The syntxhesis, photo-physics, and electroluminescence of new types of Iridium(III)-encapsulated dendrimers are described. Thus, four different iridium complexes [Ir(III)(C^N)2(LX), Blue-DCBP, Green-DCBP, Yellow-DCBP, and Red-DCBP] with ancillary ligand tethered to the CBP dendritic unit were synthesized and investigated for their photo-physical properties. A large enhancement in electroluminescence performance was observed by using these dendrimers as host/dopant hybrid materials in layered emitting diodes. In particular, host/dopant ratio can be systematically adjusted by varying dendritic generations. These results demonstrate that new Ir(III)-encapsulated dendrimers can be used as potential single-layer materials for organic light emitting diodes. Large difference in the intra-molecular charge transfer phosphorescence quantum yields and electroluminescence effiencies were observed among dendriritic generations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] (a) Melinger, J. S.; Pan, Y.; Kleiman, V. D.; Peng, Z.; Davis, B. L.; McMorrow, D.; Lu, M. J. Am. Chem. Soc. 2002, 124, 12002. (b) For a review of light-harvesting dendrimers, see: Adronov, A.; Fréchet, J. M. J. J. Chem. Soc. Chem. Commun. 2000, 1701. (c) Devadoss, C.; Bharathi, P.; Moore, J. S. J. Am. Chem. Soc. 1996, 118, 9635.Google Scholar
[2] (a) Guldi, D. M.; Swartz, A.; Luo, C.; Gómez, R.; Segura, J. L.; Martin, N. J. Am. Chem. Soc. 2002, 124, 10875. (b) Segura, J. L.; Gómez, R.; Martin, N.; Luo, C.; Swartz, A.; Guldi, D. M. Chem. Commun. 2001, 707. (c) Avent, A. G.; Birkett, P. R.; Paolucci, F.; Roffia, S.; Taylor, R.; Wachter, N. K. J. Chem. Soc. Perkin Trans. 2 2000, 1409. (d) Swallen, S. F.; Shi, Z.-Y.; Tan, W.; Xu, Z.; Moore, J. S.; Kopelman, R. J. Lumin. 1998, 76–77, 193. (e) Shortreed, M. R.; Swallen, S. F.; Shi, Z.-Y.; Tan, W.; Xu, Z.; Devadoss, C.; Moore, J. S.; Kopelman, R. J. Phys. Chem. B 1997, 101, 6318. (f) Xu, Z.; Moore, J. S. Acta Polym. 1994, 45, 83.Google Scholar
[3] (a) Lupton, J. M.; Samuel, I. D.W.; Frampton, M. J.; R., Beavington; Burn, P. L. Adv. Funct. Mater. 2001, 11, 287. (b) Lupton, J. M.; Hemingway, L. R.; Samuel, I. D.W.; Burn, P. L. J. Mater. Chem. 2000, 10, 867. (c) Halim, M.; Pillow, J. N. G.; Samuel, I. D.W.; Burn, P. L. Adv. Mater. 1999, 11, 371. (d) Halim, M.; Samuel, I. D.W.; Pillow, J. N. G.; Burn, P. L. Synth. Met. 1999, 102, 1113. (e) Wang, P. W.; Liu, Y. J.; Devadoss, C.; Bharathi, P.; Moore, J. S. Adv. Mater. 1996, 8, 237.Google Scholar
[4] (a) Lupton, J. M.; Samuel, I. D. W.; R., Beavington; Burn, P. L.; H, Bässler. Adv. Mater. 2001, 13, 258. (b) Burn, P. L.; Halim, M.; Pillow, J. N. G.; Samuel, I. D. W. SPIE Symposium on Organic Light-Emitting Materials and Devices III, Denver 1999, 3797, 66. (c) Pillow, J. N. G.; Halim, M.; Lupton, J. M.; Burn, P. L.; Samuel, I. D. W. Macromolecules 1999, 32, 5985.Google Scholar
[5] (a) N., Satoh; J.-S., Cho; M., Higuchi; K, Yamamoto. J. Am. Chem. Soc. 2003, 125, 8104. (b) Freeman, A. W.; Koene, S. C.; Malenfant, P. R. L.; Thompson, M. E.; Fréchet, J. M. J. J. Am. Chem. Soc. 2000, 122, 12385.Google Scholar
[6] N., Cumpstey; Bera, R. N.; Burn, P. L.; Samuel, I. D. W.. Macromolecules 2005, 38, 9564.Google Scholar
[7] T., Tsuzuki; N., Shirasawa; T., Suzuki; S, Tokito. Jpn. J. Appl. Phys. 2005, 44, 4151.Google Scholar
[8] P., Furuta; Fréchet, J. M.J. J. Am. Chem. Soc. 2003, 125, 13173.Google Scholar