Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-07T16:33:39.148Z Has data issue: false hasContentIssue false

Dendrimer-Metal Nanocomposites

Published online by Cambridge University Press:  10 February 2011

L. Balogh
Affiliation:
University of Michigan Center for Biologic Nanotechnology, Ann Arbor, MI 48109–0533
K. S. Laverdure
Affiliation:
University of Massachusetts Amherst, Polymer Science and Engineering, Amherst, MA 01003
S. P. Gido
Affiliation:
University of Massachusetts Amherst, Polymer Science and Engineering, Amherst, MA 01003
A. G. Mott
Affiliation:
AMSRL-SE-EO, Gaithersburg, MD, 20899
M. J. Miller
Affiliation:
AMSRL-SE-EO, Gaithersburg, MD, 20899
B. P. Ketchel
Affiliation:
AMSRL-SE-EO, Gaithersburg, MD, 20899
D. A. Tomalia
Affiliation:
University of Michigan Center for Biologic Nanotechnology, Ann Arbor, MI 48109–0533 Michigan Molecular Institute, Midland, M1 48640
Get access

Abstract

Dendrimer metal nanocomposites are novel hybride materials that display unique physical and chemical properties as a consequence of the atomic/molecular level dispersion of inorganic and organic molecules. In their synthesis, dendrimers are used as templates to pre-organize metal ions followed by an in-situ reduction, which will immobilize and stabilize atomic domains of the reaction product(s). Size, shape, size distribution and surface functionality of these nanocomposites are determined and controlled by the dendritic macromolecules and may also be influenced by the encapsulated compounds. Solubility of these molecular nanocomposites is controlled by the polymer. Thus, it is possible to solubilize conventionally insoluble inorganic compounds in water or other solvents using dendritic hosts. Conceptually, these materials have enormous potential for applications such as catalysts or molecular devices.

In this work, surface-modified poly(amido-amine) dendrimers were used to prepare {Cu(0)-PAMAM}, {Ag(0)-PAMAM} and {Au(0)-PAMAM} dendrimer-metal nanocomposites containing stable and solvent soluble zero valence metals. Characterization of the resulting nanocomposites has been carried out by TEM, UV-visible spectroscopy, and scattering techniques. Depending on the chemistry of ion preorganization in the dendrimer, internal (“I”), external (“E”) and mixed (“M”) type nanocomposite structures could be identified according to the varying location of the actual metal content.

The effect of structural differences was found to be reflected in the optical properties of the nanocomposites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. WTEC Study on R&D Status and Trends in Nanoparticles, Nanostructured Materials and Nanodevices in the United States, Proceedings of May 8–9, 1997 WTEC WorkshopGoogle Scholar
2. Polymeric Materials Encyclopedia;edited by Salomone, J. C., (CRC Press, Boca Raton Fl., 1996) Vol. 3, p. 1814 Google Scholar
3. Yin, R., Zhu, Y., Tomalia, D. A., J. Am. Chem. Soc. 120, 2678 (1998).10.1021/ja973972oGoogle Scholar
4. Sayed-Sweet, Y., Hedstrand, D. M., Spindler, R., Tomalia, D. A., J. Mater. Chem. 9, 1199 (1997).10.1039/a700860kGoogle Scholar
5. Tomalia, D. A., Baker, H., Dewald, J.; Hall, M., Kallos, M., Martin, S., Roeck, J., Ryder, J., Smith, P., Polym. J. (Tokyo) 17, 117 (1985)Google Scholar
6. Tomalia, D. A.; Naylor, A. M., III, W. A. Goddard, Angew. Chem. 102(2), 119 (1990); Angew. Chem. Int. Ed. Engl. 29(2), 138 (1990);10.1002/ange.19901020204Google Scholar
7. Dandliker, P. J., Diederich, F., Gross, M., Knobler, C. B., Louati, A., Sanford, E. A., Angew. Chem. Int. Ed. Engl. 33(17) 1739 (1994).10.1002/anie.199417391Google Scholar
8. Valerio, C., Fillaut, J., Ruiz, J., Guittard, J., Blais, J., Astruc, D., J. Am. Chem. Soc. 119(10), 2588 (1997)10.1021/ja964127tGoogle Scholar
9. Slany, M., Bardaji, M., Caminade, A., Chaudret, B., Majoral, J., Inorg. Chem. 36, 1939 (1997)10.1021/ic961258mGoogle Scholar
10. Jansen, J. F. G. A., de Brabander-van den Berg, E. M. M., Meijer, E. W., Science (Washington, D.C.) 266, 1226 (1994)Google Scholar
11. Balogh, L., Swanson, D. R., Spindler, R. and Tomalia, D. A.: ACS PMSE, 77, 118 (1997)Google Scholar
12. D. A., Tomalia and Balogh, L., U.S. Patent Application 08/924,790 (September 5, 1996)Google Scholar
13. Balogh, L.; Tomalia, D. A., J. Am. Chem. Soc., 120(29), 7355 (1998)10.1021/ja980861wGoogle Scholar
14. Zhao, M., Sun, L., Crooks, R. M., J. Am. Chem. Soc. 120(19), 4877 (1998)10.1021/ja980438nGoogle Scholar
15. Sooklal, K., Hanus, L. H., Ploehn, H. J., Murphy, C. J. Adv. Mater., 10(14), 1083 (1998).10.1002/(SICI)1521-4095(199810)10:14<1083::AID-ADMA1083>3.0.CO;2-B3.0.CO;2-B>Google Scholar
16. Esumi, K., Suzuki, A., Aihara, N., Usui, K., Torigoe, K., Langmuir, 14, 3157 (1998)10.1021/la980162xGoogle Scholar
17. Lisiecki, I. and Pileni, M. P., J. Am. Chem. Soc., 115, 3887 (1993)10.1021/ja00063a006Google Scholar
18. Huang, H. H., Yan, F. Q., Kek, Y. M., Chew, C. H., Xu, G. Q., Ji, W., Oh, P. S., Tang, S. H., Langmuir, 13, 172 (1997).10.1021/la9605495Google Scholar
19. Ayappan, S., Gopalan, R. S., Subbana, G. N., Rao, C. N. R., J. Mater. Res. 12, 398 (1997).10.1557/JMR.1997.0057Google Scholar
20. Sheik-Bahae, M.,Said, A. A., Van Stryland, E. W., Opt. Lett. 14, 955 (1989)10.1364/OL.14.000955Google Scholar
21. Yang, L., Dorsinville, R., Wang, Q. Z., Ye, P. X., Alfano, R. R., Opt. Lett. 17(5), 323 (1992)10.1364/OL.17.000323Google Scholar
22. Balogh, L., Valluzzi, R., Hagnauer, G. L., Laverdure, K. S., Gido, S. P. and Tomalia, D. A.: J. of Nanoparticle Research, in press (1999)Google Scholar
23. Valluzzi, R., He, J- A., Samuelson, L., Kumar, J., Tripathy, S., Balogh, L., Tomalia, D. A.; in press Chem. Mater. (1999)Google Scholar
24. Tan, N. Beck, Balogh, L., Trevino, S., Tomalia, D. A., Lin, J. S.:, Polymer 40, 2535 (1999)Google Scholar
25. Martin, C. R., Science, 266 (December 23), 1961 (1994)10.1126/science.266.5193.1961Google Scholar
26. Doremus, R. H., Rao, P., J. Mater. Res. 11(11), 2834 (1996).10.1557/JMR.1996.0358Google Scholar