Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T05:36:27.462Z Has data issue: false hasContentIssue false

Deformation Behavior of Niobium Silicides during High Temperature Compression

Published online by Cambridge University Press:  01 February 2011

Nobuaki Sekido
Affiliation:
[email protected], National Institute for Materials Science, Tsukuba, Japan
Seiji Miura
Affiliation:
[email protected], Hokkaido University, Sapporo, United States
Yoko Yamabe-Mitarai
Affiliation:
[email protected], National Institute for Materials Science, Tsukuba, Japan
Yoshisato Kimura
Affiliation:
[email protected], United States
Yoshinao Mishima
Affiliation:
[email protected], Tokyo Institute of Technology, Yokohama, Japan
Get access

Abstract

Deformation behavior of (Nb)/α-Nb5Si3 two-phase alloys is examined by high temperature compression tests. The alloys exhibit brittle fracture behavior at temperatures up to 1473 K, while reasonable compressive deformability at 1673 K. Upon high temperature compression of the alloys, the flow stress gradually decreases after the peak stress due to the recrystallization/recovery in the (Nb) phase, as well as the increase in the density of mobile dislocations within the α-Nb5Si3 phase. Two types of slip systems that operate in α-Nb5Si3 have been identified as {011)<11-1] and {001)<100] in the present study.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bewlay, BP, Jackson, MR, Zhao, JC, Mendiratta, MG, Lewandowski, JJ, Subramanian, PR. MRS Bull 2003;28:646.Google Scholar
2. Dimiduk, DM, Perepezko, JH.MRS Bull 2003;28:639.Google Scholar
3. Yamaguchi, M, Inui, H, Ito, K.Acta Mate 2000;48:307.Google Scholar
4. Mendiratta, MG, Goetz, R, Dimiduk, DM, Lewandowski, JJ.Metall Mat Trans A 1995; 26A:1767.Google Scholar
5. Samant, A, Lewandowski, JJ. Metall Mat Trans A 1997;28A:389.Google Scholar
6. Sekido, N, Miura, S, Mishima, Y, in: Proc.Third Pacific Rim Intnl. Conf. on Advanced Materials and Processing (TMS 1998), 2393.Google Scholar
7. Bewlay, BP, Lipsitt, HA, Jackson, MR, Reeder, WJ, Sutliff, JA. Mater Sci Eng A 1995; A192–193:534.Google Scholar
8. Sekido, N, Kimura, Y, Wei, FG, Miura, S, Mishima, Y. J Alloys Compds 2006;425:223.Google Scholar
9. Sekido, N, Kimura, Y, Miura, S, Mishima, Y.Mater Trans 2004;45:3264.Google Scholar
10. Sekido, N, Kimura, Y, Miura, S, Mishima, Y. Mater Sci Eng A 2007;444:51.Google Scholar
11. Mendiratta, MG, Dimiduk, DM. Scripta Metall Mater 1991;25:237.Google Scholar
12. Sekido, N, Kimura, Y, Wei, F-G, Miura, S, Mishima, Y. J Japan Inst Metals 2000;64:1056.Google Scholar
13. Ishida, Y, Ishida, H, Kohra, K, Ichinose, H. Philos Mag 1980;42A:453.Google Scholar
14. Field, RD, Thoma, DJ, Cooley, JC, Chu, F, Fu, CL, Yoo, MH, Hults, WL, Cady, CM. Intermetal-lics 2001;9:863.Google Scholar
15. Meyer, MK, Kramer, AJ, Akinc, M. Intermetallics 1996;4:273.Google Scholar
16. Ito, K, Ihara, K, Tanaka, K, Fujikura, M, Yamaguchi, M. Intermetallics 2001;9:591.Google Scholar
17. Sekido, N, Sakidja, R, Perepezko, JH. Intermetallics 2007;15:1268.Google Scholar