Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T09:27:18.319Z Has data issue: false hasContentIssue false

Defects in Decomposed Yba2Cu4Ox(124) Superconductor after Rapid Annealing

Published online by Cambridge University Press:  26 February 2011

Y. Li
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity
Y. Gao
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity
K. L. Merkle
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity
H. Shi
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity
U. Balachandran
Affiliation:
Materials and Components Technology Division Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Decomposition of 124 into 123 has been studied after rapid annealing at temperatures from 800°C to 1000°C. It was foundthat the superconducting transition temperature (Tc) depended on the annealing temperature and atmosphere. For decomposedsamples, fine-scale defects with strong strain contrast are observed in the 123 matrix. High-resolution electron microscopy studies show that the defects are parallel to the (001) planes of the 123 matrix. The length of the defects varies andranges from 5 nm to 50 nm in the direction parallel to the (001) planes. The defects have been interpreted to be copper oxides, which could be flux pinning centers in these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimos, D., Chaudhari, P., Mannhart, J., LeGoues, F. K., Phys. Rev. Lett. 61, 219222 (1988).Google Scholar
2. Dimos, D., Chaudhari, P., Mannhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
3. Gao, Y., Merkle, K. L., Bai, G., Chang, H. L. M., Lam, D. J., submitted to Physica C.Google Scholar
4. Jin, S., Sherwood, R. C., Gyorgy, E. M., Tiefel, T. H., van Dover, R. B., Nakahara, S., Schnelmeyer, L.F., Fastnacht, R. A., Davis, M. E., M. E., Appl. Phys. Lett. 54, 584 (1989).Google Scholar
5. Singh, R. K., Narayan, J., Singh, A. K., Krishnaswamy,Appl.Phys.Lett. 54, 2271 (1989).Google Scholar
6. Watanabe, K., Appl. Phys. Lett. 54, 575 (1989).Google Scholar
7. Ramesh, R., Hwang, D. H., Venkatesan, T., Ravi, T. S., Inam, A., Wu, X. D., Dutta, B., Thomas, G., Marshall, A. F., Geballe, T. H., Science 247, 57 (1990).Google Scholar
8. van Dover, R. B., Gyorgy, E. M., Schnelmeyer, L. F., Mitchell, J. W., Rao, K. V., Puzniak, R., Waszczak, J. V., Nature 342, 55 (1989).Google Scholar
9. Jin, S., Tiefel, T. H., Nakahara, S., Graebner, J. E., O'Bryan, H. M., Fastnacht, R. A., Kammlott, G. W., Appl. Phys. Lett. 56, 12871289 (1990).Google Scholar
10. Ramesh, R., Jin, S., Nakahara, S., Tiefel, T. H., Appl. Phys. Lett. 57, 14581460 (1990).CrossRefGoogle Scholar
11. Balachandran, U., Biznek, M. E., Tomlins, G. W., Veal, B. W., Poeppel, R. B., Physica C 165, 335 (1990).Google Scholar
12. Bud'ko, S. L., Gapotchenko, A. G., Luppov, A. E., Physica C 170, 259266(1990).Google Scholar
13. Kramers, E. J., J. Nucl. Mat. 72, 5 (1978).Google Scholar
14. van der Mey, G. P., and Kes, P. H., Phys. Rev. B 22, 6233 (1988).Google Scholar