Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T04:35:24.431Z Has data issue: false hasContentIssue false

Defects in CdTe-Based Photodetectors

Published online by Cambridge University Press:  10 February 2011

V. Valdna*
Affiliation:
IMT, Tallinn Technical University, Tallinn, 5 Ehitajate Rd., 19086 Estonia, [email protected]
Get access

Abstract

The photoluminescence spectra, defect composition and optoelectronic properties of chlorine doped CdTe monocrystals, thick layers and thin films are investigated. It is supposed that the complex defect (VCd-2ClTe) is a neutral defect that causes high resistivity of Cl doped CdTe. This complex can dissociate into two charged defects (VCd-ClTe) and ClTe at 300 K. Acentre (VCd-ClTe) is a stable defect that is responsible for p-type conductivity of Cl doped CdTe. Depending on the C1 concentration high resistivity, high photoconductivity or high p-type conductivity can be formed in CdTe that is only chlorine doped.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rablau, C.I., Setzler, S.D., Halliburton, L.E., Giles, N.C., and Doty, F.P., J. Electronic Materials 27, 813819 (1998).Google Scholar
2. Herman, M.A. and Pessa, M., J. Appl. Phys. 57, 26712693 (1984).Google Scholar
3. Fuhs, W. and Klenk, R., in Proc. 2nd World Conf on PV Solar Energy Cony., Vienna, 1998, 381386.Google Scholar
4. Wolf, H., Burchard, A., Deicher, M., Filz, T., Jost, A., Lauer, St., Magerle, R., Ostheimer, V., Pfeiffer, W., and Wichert, Th., Materials Science Forum, 196–201, 309–304 (1995).Google Scholar
5. Meyer, B.K., Hofmann, D.M., Appl. Phys. A 61, 213215 (1995).Google Scholar
6. Meyer, B.K., Omling, P., Weigel, E. and Muiller-Vogt, G., Physical Review B 46, 1513515138 (1992).Google Scholar
7. Laasch, M., Schwarz, R., Joerger, W., Eiche, C., Fiederle, M., Benz, K.W., Grasza, K., J. Crystal Growth 146, 125129 (1995).Google Scholar
8. Meyer, B.K., Stadler, W., Hofmann, D.M., Omling, P., Sinerius, D. and Benz, K.W., J. Crystal Growth 117, 656659 (1992).Google Scholar
9. Ido, T., Heurtel, A., Triboulet, R. and Marfaing, Y., J. Phys. Chem. Solids 48, 781790 (1987).Google Scholar
10. Ka, O. and Neu, G., J. Appl. Phys. 68, 38863889 (1990).Google Scholar
11. Shin, Hwa-Yuh and Sun, Cherng-Yuan, J. Crystal Growth 186, 354361 (1998).Google Scholar
12. Valdna, V., Hiie, J., Kallavus, U., Durst, R. and Jones, L., in Proc. EUROMAT 99, Munich, 1999, A4-P2.Google Scholar
13. Shaw, D. and Watson, E., J.Phys. C: Solid State Phys. 17, 49454950 (1984).Google Scholar
14. Weigel, E., Müller-Vogt, G., Steinbach, B., Wendl, W., Stadler, W., Hofmann, D.M. and Meyer, B.K., Materials Science and Engineering B 16, 1722 (1993).Google Scholar
15. Valdna, V., Physica Scripta T 69, 315318 (1997).Google Scholar
16. Shen, J., Aidun, D.K., Regel, L. and Wilcox, W.R., Materials Science and Engineering B 16, 182185 (1993).Google Scholar
17. Zanio, K., in Semiconductors and Semimetals. Vol. 13, Cadmium Telluride, AP, New York, 1978, p. 235.Google Scholar
18. Chen, Q., Hillert, M., Sundman, B., Oates, W.A., Fries, S.G., and Schmid-Fetzer, R., J. Electronic Materials 27, 961971 (1978).Google Scholar
19. Valdna, V., Solid State Phenomena 67–68, 309314 (1999).Google Scholar
20. Valdna, V., Buschmann, F., Mellikov, E., J. Crystal Growth 161, 164167 (1996).Google Scholar
21. Krustok, J., Valdna, V., Hjelt, K. and Collan, H., J. Appl. Phys. 80, 17571762 (1996).Google Scholar
22. Berding, M.A., Applied Physics Letters 74, 552554 (1999).Google Scholar
23. Wang, F., Schwartzman, A., Fahrenbruch, A.L., Sinclair, R., Bube, R.H. and Stahle, C.M., J. Appl. Phys. 62, 14691476.Google Scholar