Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T03:16:00.809Z Has data issue: false hasContentIssue false

Defects, Energies, Hydrogen, and Structural Properties of Molecular-Dynamics Modeled a-Si:H

Published online by Cambridge University Press:  15 February 2011

P. A. Fedders*
Affiliation:
Department of Physics, Washington University, St. Louis, MO 63130
Get access

Abstract

We use ab initio pseudopotential local-density-approximation methods to create and study related supercells containing 62 Si atoms and from 5 to 7 H atoms. In particular, we obtain energies and structural properties of H in different charge states that are passivating dangling bonds, in bond centered positions, and in other interstitial sites. The most striking result found is the rather large (of order 1 eV) spread of energies for a given type of defect, depending on its surroundings. We also find that changes in single particle energies or energy eigenvalues from defect to defect are not particular close to changes in the total energy and that the distinction, between bond centered H and a dangling bond plus an Si-H bond, is not as clear cut as one might think. The calculations also provide insights into possible migration mechanisms and energies for H movement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bar-Yam, Y. and Joannopoulos, J. D., Phys. Rev. Lett. 56, 2203 (1986).Google Scholar
2. Stutzmann, M., Phil. Mag. B 60, 531 (1989).Google Scholar
3. Street, R. A. and Winer, K., Phys. Rev. B 40, 6236 (1989).Google Scholar
4. Powell, M. J. and Deane, S. C., Phys. Rev. B 48, 10815 (1993).Google Scholar
5. Drabold, David A., Fedders, P. A., Klemm, Stefan, and Sankey, Otto F., Phys. Rev. Lett. 67, 2179 (1991).Google Scholar
6. Gleason, Karen K., Petrich, Mark A., and Reimer, Jeffrey A., Phys. Rev. B 36, 3259 (1987).Google Scholar
7. Reimer, J. A., Vaughn, R. W., and Knights, J. C., Phys. Rev. Lett. 44, 193 (1980).Google Scholar
8. Fedders, P. A. and Drabold, D. A., Phys. Rev. B 47, 13277 (1993).Google Scholar
9. Fedders, P. A., Drabold, D. A., and Klemm, Stefan, Phys. Rev. B 45, 4048 (1992).Google Scholar
10. Sankey, O. F. and Drabold, D. A., Bull. Am. Phys. Soc. 36, 924 (1991);Google Scholar
Sankey, O. F. and Niklewski, D. J., Phys. Rev. B 40, 3979 (1989);Google Scholar
Drabold, D. A., Fedders, P. A. and Stumm, Petra, Phys. Rev. B 49, 16415 (1994).Google Scholar
11. Van Wieringen, A. and Warmoltz, N., Physica (Utrecht) 22, 849 (1956).Google Scholar
12. Santos, Paulo V. and Jackson, Warren B., Phys. Rev. B 46, 4595 (1992).Google Scholar
13. Fedders, P. A. and Carlsson, A. E., Phys. Rev. B 39, 1134 (1989).Google Scholar
14. Buda, F., Chiaretti, Guido L., Car, R., and Pannello, M., Phys. Rev. Lett. 63, 294 (1989).Google Scholar
15. Roth, J. A., Olson, G. L., Jacobson, D. C., and Poate, J. M., Mat. Res. Soc. Symp. Proc. 297, 291 (1992).Google Scholar
16. Branz, Howard M., Asher, Sally, Nelson, Brent P., and Kemp, Mathieu, Mat. Res. Soc. Symp. Proc. 297, 279 (1993).Google Scholar
17. Allen, D. C., Joannopoulous, J. D., and Pollard, W. B., Phys. Rev. B 25, 1065 (1982); Phys. Rev. B 26, 3475, (1982).Google Scholar