Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T00:53:11.058Z Has data issue: false hasContentIssue false

Defects and Phonon Assisted Optical Transitions in Si Nanocrystals

Published online by Cambridge University Press:  09 August 2011

G Allan
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département Institut Supérieur d'Electronique du Nord, BP 69, 59652 Villeneuve d'Ascq Cedex, FRANCE, [email protected]
C Delerue
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département Institut Supérieur d'Electronique du Nord, BP 69, 59652 Villeneuve d'Ascq Cedex, FRANCE, [email protected]
M Lannoo
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département Institut Supérieur d'Electronique du Nord, BP 69, 59652 Villeneuve d'Ascq Cedex, FRANCE, [email protected]
Get access

Abstract

Phonon-assisted and zero-phonon radiative transitions in nanoscale silicon quantum dots are studied using a new approach which combines a full calculation of the confined electronic eigenstates and vibration modes. We predict that the confinement, combined with the indirect bandgap of bulk silicon, must have several important consequences on the luminescence of a single silicon dot: i) a large broadening of the peaks, in the range of 10s of meV for a 3 nm dot, in spite of the atomic-like electronic structure of the dot ii) a great sensitivity of the spectrum to the size and the shape of the dot. We obtain that phonon-assisted transitions always dominate, even for size below 2 nm. Finally, we show that the radiative recombination in presence of an oxygen related surface defect (Si=O) is also assisted by optical phonons.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Brus, L., Appl.Phys. A 53, 465 (1991), and references therein.Google Scholar
2 Efros, AI. L. and Efros, A.L., Sov.Phys.Semicond. 16, 772 (1982); L. Brus, J. Chern. Phys. 80, 4403 (1984); D. J. Norris and M. G. Bawendi, Phys.Rev. B 53, 16338 (1996).Google Scholar
3 Brunner, K., Abstreiter, G., Bohm, G., Trankle, G. and Weimann, G., Phys.Rev.Lett. 73, 1138 (1994); S. A.Empedocles, D. J.Norris, and M. G.Bawendi, Phys.Rev.Lett. 27, 3873 (1996); D.Gammon, E. S.Snow, B. V.Shanabrook, D. S.Katzer, and D.Park, Phys.Rev.Lett. 76, 3005 (1996);Google Scholar
4 For a recent review, see Cullis, A. G., Canham, L. T., P. D. J. Calcott 82, 909 (1997) and in Theory of Optical Properties and Recombination Processes in Porous Silicon, edited by G. Amato,C. Delerue and H.-J. von Bardeleben, Vol. 5, Optoelectronic Properties of Semiconductors and Superlattices series, Gordon and Breach Science Publishers (1997)Google Scholar
5 Calcott, P.D.J., Nash, K.J., Canham, L.T., Kane, M.J. and Brumhead, D., J.Phys. Condens. Matter 5, L91 (1993). T.Suemoto, K.Tanaka, A.Nakajima, and T.Itakura, Phys.Rev.Lett. 70, 3659 (1993).Google Scholar
6 Brus, L., in Light Emission in Silicon. From Physics to Devices, edited by Lockwood, D., series Semiconductors and Semimetals, Vol.49, Academic Press, p. 303 (1998).Google Scholar
7 Hybertsen, M.S., Phys.Rev.Lett. 72, 1514 (1994).Google Scholar
8 Delerue, C., Allan, G. and Lannoo, M., Phys.Rev.B 48, 11024 (1993).Google Scholar
9 Zunger, A., MRS Bulletin 23, 35 (1998); C. Delerue, G. Allan and M. Lannoo, in Light Emission in Silicon. From Physics to Devices, edited by D. Lockwood, series Semiconductors and Semimetals, Vol.49, Academic Press, p. 253 (1998).Google Scholar
10 Martin, E., Delerue, C., Allan, G. and Lannoo, M., Phys.Rev.B 50, 18258 (1994).Google Scholar
11 Wang, L.W. and Zunger, A., J.Phys.Chem. 98, 2158 (1994).Google Scholar
12 Delley, B. and Steigmeier, E. F., Appl.Phys.Lett. 67, 2370 (1995).Google Scholar
13 Keating, P.N., Phys.Rev. 145, 637 (1966).Google Scholar
14 Dexter, D.L., in Solid State Physics, Advances in Research and Applications, edited by Seitz, F. and Turnbull, D. (Academic, New York, 1958), Vol.6, p. 360.Google Scholar
15 The splitting of the lowest excitonic state into singlet and triplet states due to the electron-hole exchange interaction lead to additional complications in the emission spectra [IC]. But as the phonons do not mix states with different spins, the phonons sidebands should be relatively unchanged.Google Scholar
16 Landsberg, P.T., in Recombination in Semiconductors, Cambridge University Press (1991).Google Scholar
17 Petit, J., Allan, G. and Lannoo, M., Phys.Rev.B 33, 8595 (1986).Google Scholar
18 Harrison, W.A., Electronic Structure and the Properties of Solids (Freeman, San Francisco, 1980).Google Scholar
19 Wolkin-Vakrat, M., Fauchet, P.M., Allan, G. and Delerue, C., Phys.Rev.Lett., to be published.Google Scholar