Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T10:01:29.506Z Has data issue: false hasContentIssue false

Defect-Free Band-Edge Photoluminescence in SiGeC Strained Layers Grown by Rapid Thermal Chemical Vapor Deposition

Published online by Cambridge University Press:  15 February 2011

C. W. Liu
Affiliation:
National Chunghsing University, Dept. of Electrical Engineering, Taichung, Taiwan
A. St. Amour
Affiliation:
Princeton University, Dept. of Electrical Engineering, Princeton, NJ 08544
J. C. Sturm
Affiliation:
Princeton University, Dept. of Electrical Engineering, Princeton, NJ 08544
Y. R. J. Lacroix
Affiliation:
Simon Fraser University, Dept. of Physics, British Columbia VSA 1S6, Canada
M. L. W. Thewalt
Affiliation:
Simon Fraser University, Dept. of Physics, British Columbia VSA 1S6, Canada
Get access

Abstract

The defect-free band-edge photoluminescence at both 30K and 77K was observed for the first time in Si/SiGeC/Si quantum wells. The SiGeC samples were prepared by rapid thermal chemical vapor deposition (RTCVD) by using methylsilane as carbon source added in a dichlorosilane and germane mixture. Deep photoluminescence around 0.8 eV, previously reported by Boucaud et al., was no longer observed under any excitation conditions. Compared to control Si/SiGe/Si quantum wells, the initial effect of adding the C is to decrease the bandgap of the host SiGe layers, despite the fact that the diamond has a large bandgap.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Crabbe, E., Meyerson, B. S., Stork, J. M. C., and Harame, D. L., Tech. Dig. IEDM, 83 (1993).Google Scholar
2. Schuppen, A., Gruhle, A., Erben, U., Kibbel, H., and Konig, U., Tech. Dig. IEDM, 377 (1994).Google Scholar
3. Eberl, K., Iyer, S. S., Zollner, S., Tsang, J. C., and LeGoues, F. K., Appl. Phys. Lett., 60, 3033 (1992).Google Scholar
4. Regolini, J. L., Gisbert, F., Dolino, G., and Boucaud, P., Mat. Lett., 18, 57 (1993).Google Scholar
5. Matthews, J.W. and Blakeslee, A. E., 27, 118 (1974).Google Scholar
6. Im, S., Washburm, J., Gronsky, R., Cheung, N. W., Yu, Y. M., and Ager, J. W., Appl. Phys. Lett., 63, 2682 (1993).Google Scholar
7. Boucaud, P., Francis, C., Julien, F. H., Lourtioz, J. -M., Bouchier, D., Bodnar, S., Lambert, B., and Regolini, J. L., Appl. Phys. Lett., 64, 875 (1994).Google Scholar
8. Lanzerotti, L. D., A. St.Amour, Liu, C. W., and Sturm, J. C., Tech. Dig. IEDM 930 (1994).Google Scholar
9. Sturm, J.C., Schwartz, P.V., Prinz, E.J., and Manoharan, H., J. Vac. Sci. Tech., B9, 2011 (1991).Google Scholar
10. Liu, C. W., Sturm, J. C., Schwartz, P. V., and Fitzgerald, E. A., Proc. Symp. Mat. Res. Soc., 238, 85 (1992).Google Scholar
11. Xiao, X., Liu, C.W., Sturm, J. C., Lenchyshyn, L. C., and M.Thewalt, L.W., Appl. Phys. Lett., 60, 1720 (1992).Google Scholar
12. Liu, C. W., Sturm, J. C., Lacroix, Y., Thewalt, M. L. W., and Perovic, D. D. Appl. Phys. Lett., 65, 76 (1994).Google Scholar
13. Liu, C. W., A. SAmour, t., Sturm, J. C., Lacroix, Y., Thewalt, M. L. W., Magee, C. W., Eaglesham, D., and Moriya, N., submitted to Appl. Phys. Lett. (1995).Google Scholar
14. Xiao, X., Liu, C.W., Sturm, J. C., Lenchyshyn, L. C., Thewalt, M.L.W., Gregory, R. B., and Fejes, P., Appl. Phys. Lett., 60, 2135 (1992).Google Scholar
15. People, R., Phys. Rev. B, 32, 1405 (1985).Google Scholar
16. Demkov, A. A. and Sankey, O. F., Phys. Rev. B, 48, 2207 (1993).Google Scholar