Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:15:01.806Z Has data issue: false hasContentIssue false

Defect Formation During Sublimation Bulk Crystal Growth of Silicon Carbide

Published online by Cambridge University Press:  10 February 2011

Noboru Ohtani
Affiliation:
Advanced Technology Research Laboratories, Nippon Steel Corporation, 5-10-1 Fuchinobe, Sagamihara, 229-8551Japan
Jun Takahashi
Affiliation:
Advanced Technology Research Laboratories, Nippon Steel Corporation, 5-10-1 Fuchinobe, Sagamihara, 229-8551Japan
Masakazu Katsuno
Affiliation:
Advanced Technology Research Laboratories, Nippon Steel Corporation, 5-10-1 Fuchinobe, Sagamihara, 229-8551Japan
Hirokatsu Yashiro
Affiliation:
Advanced Technology Research Laboratories, Nippon Steel Corporation, 5-10-1 Fuchinobe, Sagamihara, 229-8551Japan
Masatoshi Kanaya
Affiliation:
Advanced Technology Research Laboratories, Nippon Steel Corporation, 5-10-1 Fuchinobe, Sagamihara, 229-8551Japan
Get access

Abstract

The defect formation during sublimation bulk crystal growth of silicon carbide (SiC) is discussed. SiC bulk crystals are produced by seeded sublimation growth (modified-Lely method), where SiC source powder sublimes and is recrystallized on a slightly cooled seed crystal at uncommonly high temperatures (≥2000°C). The crystals contain structural defects such as micropipes (hollow core dislocations), subgrain boundaries, stacking faults and glide dislocations in the basal plane. The type and density of the defects largely depend on the crystal growth direction, and many aspects are different between the growth parallel and perpendicular to the <0001> c-axis. Micropipes are characteristic defects to the c-axis growth, while a large number of stacking faults are introduced during growth perpendicular to the c-axis. We discuss the cause and mechanism of the defect formation

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shenai, K., Scott, R.S., and Baliga, B. J., IEEE Trans. Electron Devices 36, 1811 (1989).Google Scholar
2. Ziegler, G., Lanig, P., Theis, D., and Weyrich, C., IEEE Trans. Electron Devices ED-30, 277 (1983).Google Scholar
3. Hobgood, H.M., Barrett, D.L., McHugh, J.P., Clarke, R.C., Sriram, S., Burk, A.A., Greggi, J., Brandt, C.D., Hopkins, R.H., and Choyke, W.J., J. Cryst. Growth 137, 181 (1994).Google Scholar
4. Ohtani, N., Takahashi, J., Katsuno, M., Yashiro, H., Kanaya, M., and Shinoyama, S., in Bulk Development of Crystal Growth, edited by Isshiki, M. (Research Signpost, Trivandrum, 1998), Chap. 10.Google Scholar
5. Tsvetkov, V., Glass, R.C., Henshall, D., Asbury, D., and Carter, C.H. Jr., Mater. Sci. Forum 264–268, 3 (1998).Google Scholar
6. Tairov, Y.M. and Tsvetkov, V.F., J. Cryst. Growth 43, 209 (1978).Google Scholar
7. Drowart, J., Maria, G.De., and Inghram, M.G., J. Chem. Phys. 29, 1015 (1958).Google Scholar
8. Tairov, Y.M. and Tsvetkov, V.F., J. Cryst. Growth 52, 146 (1981).Google Scholar
9. Maltsev, A.A., Guseva, N.B., and Nikitina, I.P., Abstracts Book of the 5th Int. Conf. Silicon Carbide and Related Materials (Washington D.C., 1993), 147.Google Scholar
10. Takahashi, J., Kanaya, M., and Fujiwara, Y., J. Cryst. Growth 135, 61 (1994).Google Scholar
11. Takahashi, J., Ohtani, N., and Kanaya, M., J. Cryst. Growth 167, 596 (1996).Google Scholar
12. Dudley, M., Wang, S., Huang, W., Carter, C.H. Jr., Tsvetkov, V.F., and Fazi, C., J. Phys. D: Appl. Phys. 28, A63 (1995).Google Scholar
13. Si, W., Dudley, M., Glass, R., Tsvetkov, V., and Carter, C. Jr., J. Electron. Mater. 26, 128 (1997).Google Scholar
14. Frank, F.C., Acta Crystallogr. 4,497 (1951).Google Scholar
15. Stein, R.A. and Lanig, P., J. Cryst. Growth 131,71 (1993).Google Scholar
16. Takahashi, J., Ohtani, N., and Kanaya, M., Jpn. J. Appl. Phys. 34,4694 (1995).Google Scholar
17. Katsuno, M., Ohtani, N., Takahashi, J., Yashiro, H., Kanaya, M., and Shinoyama, S., Abstract Book of Int. Workshop Hard Electronics (Tsukuba, 1997), p. 5.Google Scholar
18. Kanaya, M., Takahashi, J., Fujiwara, Y., and Moritani, A., Appl. Phys. Lett. 58, 56 (1991).Google Scholar
19. Heindl, J., Dorsch, W., Eckstein, R., Hofmann, D., Marek, T., Muller, St.G., Strunk, H. P., and Winnacker, A., Diamond Relat. Mater. 6, 1269 (1997).Google Scholar
20. Neudeck, P.G. and Powell, J.A., IEEE Electron Device Lett. 15,63 (1994).Google Scholar
21. Koga, K., Fujikawa, Y., Ueda, Y., and Yamaguchi, T., in Amorphous and Crystalline Silicon Carbide IV, Springer Proc. Phys. Vol. 71, edited by Yang, C.Y., Rahman, M.M., and Harris, G.L. (Springer-Verlag, Berlin, 1992), p. 96.Google Scholar
22. Giocondi, J., Rohrer, G.S., Skowronski, M., Balakrishna, V., Augustine, G., Hobgood, H.M., and Hopkins, R.H., J. Cryst. Growth 181, 351 (1997).Google Scholar
23. Gotoh, Y. and Komatsu, H., J. Cryst. Growth 54, 163 (1981).Google Scholar
24. Turner, G., Stewart, B., Baird, T., Peacock, R.D., and Cairns-Smith, A.G., J. Cryst. Growth 158,276 (1996).Google Scholar
25. Pirouz, P., Mater. Sci. Forum 264–268, 399 (1998).Google Scholar
26. Heindl, J., Strunk, H.P., Heydemann, V.D., and Pensl, G., Phys. Stat. Sol. (a) 162, 251 (1997).Google Scholar
27. Takahashi, J. and Ohtani, N., Phys. Stat. Sol. (b) 202, 163 (1997).Google Scholar
28. Takahashi, J., Ohtani, N., Katsuno, M., and Shinoyama, S., J. Cryst. Growth 181, 229 (1997).Google Scholar
29. Heine, V., Cheng, C., and Needs, R.J., J. Am. Ceram. Soc. 74, 2630 (1991).Google Scholar