Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T10:01:31.406Z Has data issue: false hasContentIssue false

Defect energetics, thermal stability and localized electronic states in carbon nanotubes

Published online by Cambridge University Press:  15 March 2011

Roberto Conversano
Affiliation:
ENEA, Casaccia Research Center, HPCN Project, 00100 Roma (Italy)
Fabrizio Cleri
Affiliation:
ENEA, Casaccia Research Center, Divisione Nuovi Materiali, 00100 Roma (Italy) Istituto Nazionale di Fisica della Materia (INFM), Unità di Ricerca di Roma I
Gregorio D'Agostino
Affiliation:
ENEA, Casaccia Research Center, Divisione Nuovi Materiali, 00100 Roma (Italy)
Vittorio Rosato
Affiliation:
ENEA, Casaccia Research Center, HPCN Project, 00100 Roma (Italy) Istituto Nazionale di Fisica della Materia (INFM), Unità di Ricerca di Roma I
Manuela Volpe
Affiliation:
ENEA, Casaccia Research Center, Divisione Nuovi Materiali, 00100 Roma (Italy) Dip.to di Scienze e Tecnologie Chimiche, Universitá di Roma “Tor Vergata”, 00133 Roma (Italy)
Get access

Abstract

Tight Binding molecular dynamics simulations have been performed on single wall carbon nanotubes, in order to evaluate thermal stability and the effect of the most relevant defects (the single vacancy and a Stone-Wales -SW- defect). The nanotubes are stable up to the graphite instability temperature. Both the considered defects have a large formation energy (EF(vac)=6.10 eV, EF(SW)= 5.55 eV).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dresselhaus, M. S., Dresselhaus, G. and Eklund, P., in “Science of Fullerenes and Carbon Nanotubes: Preparation and Properties”, edited by Ebbessen, T. (CRC Press, Boca Raton, FL, 1997).Google Scholar
2. Orlikowski, D., Nardelli, M. Buorgiorno, Bernholc, J. and Roland, C., Phys. Rev. B, 61, 14194 (2000).Google Scholar
3. Dresselhaus, M. S., Williams, K. A. and Eklund, P. C., MRS Bull., 24, 45 (1999).Google Scholar
4. Xu, C. H., Wang, C. Z., Chan, C. T., Ho, K. M., J. Phys.: Condens. Matter 4, 6047 (1992).Google Scholar
5. Colombo, L., in “Annal Review of Computational Physics IV”, edited by Stauffer, D. (World Scientific, Singapore, 1996) p.147.Google Scholar
6. Goedeker, S. and Colombo, L., Phys. Rev. Lett., 73, 122 (1994); S. Goedeker and M. Teter, Phys. Rev. B, 51, 9455 (1995).Google Scholar
7. Rosato, V., Celino, M., Gaito, S. and Benedek, G., Phys. Rev. B, 60, 16928 (1999).Google Scholar
8. Hultgren, R. et al. , Selected Values of the Thermodynamic Properties of the Elements, American Society of Metals (Metal Park, Ohio USA, 1973).Google Scholar
9. Kahn, D., Lu, J. P., Phys. Rev. B, 60, 6535 (1999).Google Scholar
10. Banhart, F., Rep. Prog. Phys., 62, 1181 (1999).Google Scholar
11. Charlier, J.-C., Ebbesen, T.W., Lambin, Ph., Phys. Rev. B, 53, 11108 (1996).Google Scholar
12. Orlikowski, D., M. Buongiorno Nardelli, Bernholc, J., Roland, C., Phys. Rev. B, 61, 14194 (2000).Google Scholar
13. Letardi, S., Celino, M., Cleri, F., Rosato, V., in preparation.Google Scholar