Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T23:42:29.619Z Has data issue: false hasContentIssue false

Defect Dynamics in Amorphous Silicon – the Recrystallization Process

Published online by Cambridge University Press:  26 February 2011

Sokrates T. Pantelides*
Affiliation:
IBM Thomas J. Watson Research Center Yorktown Heights, New York 10598
Get access

Abstract

The mechanism that underlies the recrystallization of amorphous silicon tas not been established. It is generally argued, however, that the rearrangement of the network occurs through the breaking of bonds or the introduction of vacancies and that this step is responsible for the observed activation energy (∼2.5 eV). It is suggested here that the rearrangement of the network is accomplished through the migration of intrinsic overcoordination defects (“floating bonds”) and that this process has a small activation energy (∼0.4 eV). The observed large activation energy is actually due to a reaction that inhibits recrystallization. This reaction may be the elimination of preexisting dangling bonds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Values of this quantity for undoped a-Si vary from 2.3 to 2.9 eV. See, e.g., Csepregi, L., Kennedy, E. F., Callagher, T. J., Mayer, I. W., and Sigmon, T. W., J. Appl. Phys. 48,4234 (1977); A. Lietoila, A. Wakita, T. W. Sigmon, and J. F. Gibbons, I. Appl. Phys. 53, 4399 (1982); G. L. Olson, I. A. Roth, L. D. Hess, and J. Narayan, in Layered Structures and Interface Kinetics, edited by S. Furukawa, (KTK Scientific Publishers, Tokyo, 1985), p. 73.CrossRefGoogle Scholar
2. Car, R., Kelly, P. J., Oshiyama, A., and Pantelides, S. T., Phys. Rev. Lett. 52, 1814 (1984), and 54, 360 (1985); Y. Bar-Yam and I. D. Joannopoulos, J. Electron. Mater. 14, 261 (1985).Google Scholar
3. Dannefaer, S., Mascher, P., and Kerr, D., Phys. Rev. Lett. 56, 2195 (1986).Google Scholar
4. Spaepen, F. and Turnbull, D., in Laser-Solid Interactions and Laser Processing, edited by Ferris, S. D., Leamy, H. J., and Poate, J. M., (American Institute of Physics, New York, 1978), p. 73.Google Scholar
5. Germain, P. J., Paesler, M. A., Sayers, D. E., and Zellama, K., MRS Symp. Proc. vol.13, p. 135 (1983).Google Scholar
6. Mosley, L. E. and Paesler, M. A., Appl. Phys. Lett. 45, 86 (1984)Google Scholar
7. Drosd, R. and Washburn, I., I. Appl. Phys. 53, 397 (1982).Google Scholar
8. Narayan, J., J. Appl. Phys. 53, 8607 (1982).Google Scholar
9. Pantelides, S. T., Phys. Rev. Lett. 57, 2979 (1986); S. T. Pantelides, Phys. Rev. Lett. 58, 1344 (1987); Phys. Rev. B 36, 3479 (1987).Google Scholar
10. Thomas, P. A., Brodsky, M. H., Kaplan, D., and Lepine, D., Phys. Rev. B 18, 3059 (1978).Google Scholar
11. Linnros, J., Svensson, B., and Holmen, G., Phys. Rev. B 30, 3629 (1984).CrossRefGoogle Scholar
12. See, e.g., Street, R. A., Phys. Rev. Lett. 49, 1187 (1982).Google Scholar
13. Stathis, J. H. and Pantelides, S. T., to be published.Google Scholar