Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:47:51.186Z Has data issue: false hasContentIssue false

Deep Levels Induced by SiCI4 Reactive Ion Etching in GaAs

Published online by Cambridge University Press:  22 February 2011

N.P. Johnson
Affiliation:
Department of Electronics and Electrical Engineering, The University, Glasgow G12 8QQ, UK
M. A. Foad
Affiliation:
Department of Electronic and Electrical Engineering, University of Salford, Salford M5 4WT, UK
S. Murad
Affiliation:
Department of Electronics and Electrical Engineering, The University, Glasgow G12 8QQ, UK
M. C. Holland
Affiliation:
Department of Electronics and Electrical Engineering, The University, Glasgow G12 8QQ, UK
C. D. W. Wilkinson
Affiliation:
Department of Electronics and Electrical Engineering, The University, Glasgow G12 8QQ, UK
Get access

Abstract

Deep Level Transient Spectroscopy (DLTS) is used to investigate the effect of SiC14 Reactive Ion Etching (RIE) on GaAs. At high power (150-80 W) with high DC self bias (380-240 V), five deep levels trapping electrons are observed at energies of 0.30, 0.42, 0.64, 0.86 and ∼0.8 eV below the conduction band edge. Depth profiling reveals an approximate exponential decay of the concentration of the deep levels. At low power the induced concentration falls, the small concentration of remaining deep levels is close to control (no etching) samples. The induced deep levels can account for reduced conductances in n+GaAs wires defined by RIE under similar experimental conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Long, A R, Rahman, M, MacDonald, I K, Kinsler, M, Beaumont, S P, Wilkinson, C D W and Stanley, C R Semicond. Sci Technol. 8 3944 (1983)Google Scholar
2 Rahman, M, Johnson, N P, Foad, M A, Long, A R, Holland, M C and Wilkinson, C D W Appl. Phys. Lett. 61 (19) 23352337 (1992)Google Scholar
3 Foad, M.A., Hefferman, S., Chapman, J.N. and Wilkinson, C.D. W. 1991Gallium Arsenide and Related Compounds (IOP Conf. Set 112) p293 Google Scholar
4 Cheung, R., Thorns, S., Watt, M., Foad, M.A., Sotomayor-Torres, C.M., Wilkinson, C.D.W., Cox, U.J., Cowley, R.A., Dunscombe, C. and Williams, R.H., Semicond. Sci. Technol. 7 11891198 (1992)CrossRefGoogle Scholar
5 Foad, M.A., Thorns, S. and Wilkinson, C.D.W., J. Vac. Sci. Technol. B 11 (1) p2025 (1993)CrossRefGoogle Scholar
6 Thorns, S, Beaumont, S P, Wilkinson, C D W, Frost, J, Stanley, C R 1986 Microelectr. Eng 5 p249 Google Scholar
7 Lootens, D, Daele, P. Van, Demeester, P, and Clauws, P. J. Appl. Phys. 70, 221 (1991)CrossRefGoogle Scholar
8 Lang, D V J. Appl. Phys., 45 30233033 (1974)Google Scholar
9 Murad, S.K., Wilkinson, C.D.W., Wang, P.D., Parkes, W., Sottomayer-Torres, C.M. and Cameron, N.. Very low damage etching of GaAs, Presented at the 37th. Int. Symp. on Electron, Ion and Photon Beams, 1-4 '93Google Scholar
10 Martin, G. M., Mitonneau, A. and Mircea, A., Electronics Letters 13 (7) 191192 (1977)Google Scholar
11 Day, D S, Oberstar, J D, Drummond, T J, Morkoc, H, Cho, A Y, and Streetman, B G, J Elect. Mater. 10, 445453 (1981)Google Scholar
12 Sah, C.T., Forbes, L., Rosier, L.L. and Tasch, A.F., JR. Sol. Stat. Elect. 13 759788 (1970)Google Scholar
13 Bleicher, M. and Lange, E., Solid State Electronics 16, 375380 (1973)Google Scholar
14 Rockett, P.I. and Peaker, A.R., Appl. Phys. Lett. 40 (11), 957959 (1982)Google Scholar
15 Flytzani-Stephanopoulos, M. and Schmidt, L D Prog. Surf. Sci. 9 p83111 (1979)Google Scholar
16 Zuo, J. -K. and Zehner, D. M. Phys. Rev. B 46, 1612216127 (1992)Google Scholar
17 Somorjai, G. A. and Hove, M. A. Van, Prog. Surf. Sci. 30 p201231 (1989)Google Scholar