Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T04:00:28.321Z Has data issue: false hasContentIssue false

The Decomposition of Methyltrichlorosilane: Studies in A High-Temperature Flow Reactor

Published online by Cambridge University Press:  22 February 2011

Mark D. Allendorf
Affiliation:
Combustion Research Facility, Mail Stop 9052, Sandia National Laboratories, Livermore, CA 94551-0969
Thomas H. Osterheld
Affiliation:
Combustion Research Facility, Mail Stop 9052, Sandia National Laboratories, Livermore, CA 94551-0969
Carl F. Melius
Affiliation:
Combustion Research Facility, Mail Stop 9052, Sandia National Laboratories, Livermore, CA 94551-0969
Get access

Abstract

Experimental measurements of the decomposition of methyltrichlorosilane (MTS), a common silicon carbide precursor, in a high-temperature flow reactor are presented. The results indicate that methane and hydrogen chloride are major products of the decomposition. No chlorinated silane products were observed. Hydrogen carrier gas was found to increase the rate of MTS decomposition. The observations suggest a radical-chain mechanism for the decomposition. The implications for silicon carbide chemical vapor deposition are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schlichting, J., Powder Metal. Inter. 12, 196 (1980).Google Scholar
2. Besmann, T. M., Gallois, B. N., Warren, J. W., Eds., Chemical Vapor Deposition of Refractory Metals and Ceramics II (Mater. Res. Soc. Proc. 250, Pittsburgh, PA, 1992).Google Scholar
3. Chiu, C. C., Desu, S. B., Tsai, C. Y., J. Mater. Res. 8, 2617 (1993).CrossRefGoogle Scholar
4. Burgess, J. N., Lewis, T. J., Chemistry and Industry, 76 (1974).Google Scholar
5. Davidson, I. M. T., Dean, C. E., Organometallics 6,966 (1987).CrossRefGoogle Scholar
6. Niiranen, J. T., Gutman, D., J. Phys. Chem. 97, 9392 (1993).CrossRefGoogle Scholar
7. Allendorf, M. D., Melius, C. F., J. Phys. Chem. 97, 720 (1993).CrossRefGoogle Scholar
8. Osterheld, T. H., Allendorf, M. D., Melius, C. F., submitted to J. Phys. Chem., 1993.Google Scholar
9. Safarik, I., Ruzsicska, B. P., Jodhan, A., Strausz, O. P., Chem. Phys. Lett. 113, 71 (1985).CrossRefGoogle Scholar
10. Fischman, G. S., Petuskey, W. T., J. Am. Ceram. Soc. 68, 185 (1985).CrossRefGoogle Scholar
11. Stinespring, C. D., Wormhoudt, J. C., J. Appl. Phys. 65, 1733 (1989).CrossRefGoogle Scholar