Hostname: page-component-f554764f5-68cz6 Total loading time: 0 Render date: 2025-04-20T16:23:55.294Z Has data issue: false hasContentIssue false

Damping and Spatial Distribution of Percolation Fractons

Published online by Cambridge University Press:  03 September 2012

S. Russ
Affiliation:
Laboratoire de Physique de la Matière Condensée, C.N.R.S. Ecole Polytechnique, 91128 Palaiseau Cédex, France
B. Sapoval
Affiliation:
Laboratoire de Physique de la Matière Condensée, C.N.R.S. Ecole Polytechnique, 91128 Palaiseau Cédex, France
Get access

Abstract

The damping of the vibrations of very irregular discretized systems embedded in a viscous fluid is studied in the particular case of the vibrations of percolation clusters. We develop a formal description for the “regularity” of a vibrational mode. This permits us to measure numerically how the local fluctuations in the vibration amplitude contribute to the viscous damping. The fact that the regularity is found to be larger than that of a single localized state on a linear chain is indicative of the very structure of the percolation cluster made of blobs and red bonds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

References:

[1] Russ, S. and Sapoval, B., Phys. Rev. Lett. 73 (1994) 1570.Google Scholar
[2] Sapoval, B., Russ, S.; Proceedings of the First International Conference on “Scaling Concepts and Complex Fluids”, Catanzaro(Italy) 1994, I1 Nuovo Cimento (in press).Google Scholar
[3] Thouless, D. J., Phys. Rep. 13 (1974) 93.Google Scholar
[4] Alexander, S. and Orbach, R., J. Physique Lett. 43 (1982) L625.Google Scholar
[5] Nakayama, T. and Yakubo, K., Rev. Mod. Phys. 66 (1994) 381.Google Scholar
[6] Stauffer, D. and Aharony, A., Introduction to Percolation Theory (Taylor and Francis, London 1992); A. Bunde and S. Havlin in Fractals and Disorderes Systems, ed. by A. Bunde and S. Havlin (Springer Verlag, Heidelberg, 1991), p. 51.Google Scholar
[7] Harris, A.B. and Aharony, A., Europhys. Lett. 4 (1987) 1355; A. Aharony and A.B. Harris, Physica (Amsterdam) 163A (1990) 38.Google Scholar
[8] Bunde, A., Roman, H.E., Russ, S., Aharony, A. and Harris, A.B., Phys. Rev. Lett. 69 (1992) 3189.Google Scholar
[9] Ziff, R. and Sapoval, B., J. Phys. A: Math. Gen. 19 (1986) L1169.Google Scholar
[10] Leath, P.L., Phys. Rev. B14 (1976) 5046.Google Scholar
[11] Williams, M.L. and Maris, H.J., Phys. Rev. B31 (1985) 4508.Google Scholar
[12] Stanley, H. E.; J. Phys. A 14 (1977) L211.Google Scholar