Published online by Cambridge University Press: 26 February 2011
The removal of lattice damage and consequent activation by rapid thermal annealing of implanted Si, Se, Zn and Be in GaAs was investigated by capacitance-voltage profiling, Hall measurements, transmission electron microscopy (TEM), secondary ion mass spectrometry and Rutherford backscattering. The lighter species show optimum electrical characteristics at lower annealing temperatures (˜850°C for Be, ˜950°C for Si) than the heavier species (˜900°C for Zn, ˜1000°C for Se), consistent with the amount of lattice damage remaining after annealing. TEM reveals the formation of high densities (107 cm−2) of dislocation loops after 800°C, 3s anneals of high dose (1×1015 cm−2) implanted GaAs, which are gradually reduced in density after higher temperatures anneals (˜1000°C). The remaining loops do not appear to effect the electrical activation or carrier mobility in the implanted layer, the latter being comparable to bulk values.