Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T04:21:01.108Z Has data issue: false hasContentIssue false

The Cytotoxicity of Quantum Dots CdSe/CdS functionalized with -COOH and –NH2

Published online by Cambridge University Press:  31 January 2011

Lin-Jing Shen
Affiliation:
[email protected], Hunan University, Changsha, Hunan, China
Jing Cui
Affiliation:
[email protected], Hunan University, Changsha, Hunan, China
Jin-Hua Liu
Affiliation:
[email protected], Hunan University, Changsha, Hunan, China
Xiao-Bo Xu
Affiliation:
[email protected], Hunan University, Changsha, Hunan, China
Ming-Qiang Zhu
Affiliation:
[email protected], Hunan University, Changsha, China
Get access

Abstract

Recently, semiconductor nanocrystals or quantum dots (QDs) aroused great concern because of their unique properties such as the size-dependent photoluminescence. They have many excellent applications in areas of molecular bioimaging, medical detection and even energy, especially as biosensing and imaging instead of fluorescent dyes. For the bio-safety, however, we should assess the cytotoxicity of QDs before used in biomedical imaging. Here, the cytotoxicity of amino-functionalized CdSe/CdS (CdSe/CdS-NH2) QDs and carboxy-functionalized CdSe/CdS (CdSe/CdS-COOH) QDs was investigated by MTT assay method. According to our findings, both CdSe/CdS-NH2 and CdSe/CdS-COOH have a dose-dependent effect on cell proliferation. The cytotoxicity of QDs varies with storing time of QDs and kinds of cells. The cytotoxicity of QDs modified with -COOH or -NH2 groups both vary with concentrations in positive linear or change with QD storing time in negative linear. The results indicate that CdSe/CdS-COOH QDs have lower toxicity than CdSe/CdS-NH2 QDs. Hela cell is somewhat more sensitive to amino- and carboxy-modified QDs than Bel7404 cell for MTT assays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rosenthal, S.J. Nat. Biotechnol. 19, 621622 (2001).Google Scholar
2 Dubertret, B. Skourides, P. Norris, D.J. Noireaux, V. Brivanlou, A.H. Libchaber, A. Science 298, 17591762 (2002).Google Scholar
3 Chan, W.C. Nie, S. Science 281, 20162018 (1998).Google Scholar
4 bruchez, M. Moronne, M. Gin, P. Weiss, S. Alivisatos, A.P., Science 281, 20132016 (1998).Google Scholar
5 Chan, W.C. Maxwell, D.J. Gao, X. Bailey, R.E. Han, M. Nie, S. Curr. Opin. Bintechnol. 13, 4046 (2002).Google Scholar
6 Hering, V.R. Gibson, G. Schumacher, R.I. Faljoni-Alario, A. and Politi, M.J. Bioconjugate Chem. 18, 17051708 (2007).Google Scholar
7 Santone, K.S. Acosta, D. Bruckner, J.V. Toxicol, J. Environ. Health 10, 169177 (1982).Google Scholar
8 Limaye, D.A. Shaikh, Z.A. Toxicol. Appl. Pharmacol. 154, 5966 (1999).Google Scholar
9 Liu, J. Kershaw, W.C. Klaassen, C.D. In Vitro Cell Dev. Biol. 26, 7579 (1990).Google Scholar
10 Li, J.J. Wang, Y.A. Guo, W. Keay, J.C. Mishima, T.D. Johnson, M.B. and Peng, X. J. Am. Chem. Soc. 125, 1256712575 (2003).Google Scholar
11 Yu, W.W. Chang, E. Falkner, J.C. Zhang, J. A.M. Al-Somali, Sayes, C.M. Johns, J. Drezek, R. and Colvin, V.L. J. Am. Chem. Soc. 129, 28712879 (2007).Google Scholar
12 Yezhelyev, M.V. Qi, L. O'Regan, R. M., Nie, S. and Gao, X. J. Am. Chem. Soc., 2008, 130 (28), pp 90069012 Google Scholar
13 Yourtee, M.D. Tong, P.Y. Rose, L.A. J. Res. Commun. Mol. Pathol. Pharmacol. 86, 347360 (1994).Google Scholar