No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
In this paper, we present detailed reverse leakage data on laser annealed diodes which were formed by implanting 1 × 1013 and 1 × 1014 /cm2 B atoms at 20 keV and by implanting 1× 1014 and 1× 1015/cm2 As atoms at 50 keV into Si. The implant is made into bare Si through oxide windows where 1700Å thermal SiO2 is both the implant mask and the diode edge passivation. The thermal controls were annealed at 900°C for the B and 950°C for the As for 30 minutes. Diode reverse leakage curves versus voltage are reported for devices with variable perimeter to area ratios. The results indicate that B diodes can easily be made with characteristics similar to thermally annealed devices with leakage at 1V in the 10−9 A/cm2 range. For As implanted diodes, the results are mixed. For As implants of 1 × 1014 /cm2 the diodes had leakage currents at 3V in the high 10−9 A/cm2 range. At the 1 × 1015/cm 2 level devices with significantly higher leakage values at high reverse bias were obtained. The leakage and sheet resistance are determined in both cases and an optimum is shown as a function of laser power.