Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T02:29:00.794Z Has data issue: false hasContentIssue false

A Current Conduction Mechanism in Laser Recrystallized Silicon Metal-Oxide-Semiconductor Transistors

Published online by Cambridge University Press:  22 February 2011

Han-Sheng Lee*
Affiliation:
Electronics Department General Motors Research Laboratories Warren, Michigan 48090–9055
Get access

Abstract

N-channel MOS transistors were fabricated on silicon films that had been recrystallized by an argon ion laser at different power levels. These transistors showed electrical characteristics similar, but somewhat inferior to those devices fabricated on single crystal silicon substrates. These differences are attributed to the presence of trapping states at the grain boundaries of the crystallites in the recrystallized silicon. A coulombic scattering model is presented to explain these differences. In the case of films annealed at low laser power, an additional factor of nonuniform trap state distribution is invoked to explain device characteristics. This model provides an adequate explanation for the observed transport properties of transistors fabricated from recrystallized silicon films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lee, K. F., Gibbons, J. F., and Sawaswat, K. C., Appl. Phys. Lett., 35, 173 (1979).Google Scholar
2.Tasch, A. F., Holloway, T. C., Lee, K. F., and Gibbons, J. F., Electron Lett., 15, 435 (1979).Google Scholar
3.Kamins, T. I., Lee, K. F., Gibbons, J. F., and Sawaswat, K. C., IEEE Trans. Electron Devices, ED-27, 298 (1980).Google Scholar
4.Lam, H. W., Tasch, A. F., and Holloway, T. C., IEEE Electron Device Lett., EDL-1, 206 (1980).Google Scholar
5.Lee, H. S., Appl. Phys. Lett., 38, 770 (1981).Google Scholar
6.Lee, H. S., Solid-State Electron., 24, 1059 (1981).Google Scholar
7.Ng, K. K., Cellar, G. K., Povilonis, E. I., Frye, R. C., Leamy, H. J., and Sze, S. M., IEEE Electron Device Lett., EDL-2, 316 (1981).Google Scholar
8.Baudrand, H., Hamadto, E., and Amalic, J. L., Solid-State Electron., 24, 1093 (1981).Google Scholar
9.Frye, R. C. and Ng, K. K., in: Grain Boundaries in Semiconductors, edited by Leamy, H. J., Pike, G. E., and Seager, C. H. (North-Holland, New York, 1982) p. 275.Google Scholar
10.Seto, J. Y. W., J. Appl. Phys., 46, 5247 (1975).Google Scholar
11.Wu, C. M. and Yang, E. S., Appl. Phys. Lett., 40, 49 (1982).Google Scholar
12.Waxman, A., Henrich, V. E., Shallcross, F. V., Brokan, H., and Weimer, P. K., J. Appl. Phys., 36, 168 (1965).Google Scholar
13.Grove, A. S., Physics and Technology of Semiconductor Devices, Wiley, New York, 1967, Chap. 11.Google Scholar
14.Nicollian, E. H. and Brews, J. R., MOS Physics and Technology, Wiley, New York, 1982, Chap. 4.Google Scholar
15.Sun, S. C. and Plummer, J. D., IEEE Electron Devices, ED-27, 1497 (1980).Google Scholar
16.Tsaur, B. Y., Fan, J. C. C., Geis, M. W., Silversmith, D. J., and Mountain, R. W., Technical Digest, International Electron Devices Meeting, 1981, p. 232.Google Scholar