Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T09:52:49.221Z Has data issue: false hasContentIssue false

The Current And Future Status Of Diamond in Electronics

Published online by Cambridge University Press:  10 February 2011

Paul R. Chalker
Affiliation:
AEA Technology, Didcot, Oxfordshire, UK.
Ian M.
Affiliation:
AEA Technology, Didcot, Oxfordshire, UK.
Buckley Golder
Affiliation:
AEA Technology, Didcot, Oxfordshire, UK.
Get access

Abstract

Both passive and active electronic applications of CVD diamond have been proposed since the earliest stages of its development, largely based on an extrapolation of the superlative properties of single crystal diamond. Consequently, CVD diamond research has striven hard to match up to this expectation and significant advances have been made.

CVD diamond compares favourably with natural or high pressure synthetic single crystal material for passive electronic applications. The development of CVD diamond deposition technology for thermal management has led producers to address issues such as production cost, yield and quality. CVD polycrystalline diamond is becoming a commodity material and commercial applications in thermal management are emerging. Many of these developments are expected to feed into active electronic applications and will act as a springboard for diamond into commercial technology.

The active electronic applications for diamond are more demanding in terms of materials and process technologies. For example, doping, structure delineation and contact schemes have been widely demonstrated and prototype devices are showing potential benefits in sensors, detectors, photonics and cold cathodes. The current and future status of diamond electronics is reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Collins, A.T., Mater. Res. Soc. Symp. Proc., 162 (1990), p. 3.Google Scholar
[2] Ashcroft, N.W. and Mermin, N.D., Solid State Physics, W.B. Saunders Co. Philadelphia, PA, 1976.Google Scholar
[3] Graebner, J.E., Jin, S., Kammlott, G.W., Wong, Y.-H., Herb, J.A. and Gardinier, C.F., Diamond and Related Materials, 2 (1993), p. 1059.Google Scholar
[4] Graebner, J.E., Jin, S., Kammlott, G.W., Herb, J.A. and Gardinier, C.F., Nature, 359 (1992), p. 401.Google Scholar
[5] Sussmann, R.S., Brandon, J.R., Scarsbrook, G.A., Sweeney, C.G., Valentine, T.J., Whitehead, A.J. and Wort, C.J.H., Diamond and Related Materials, 3 (1994), p. 303.Google Scholar
[6] Eden, R.C., Materials Science Monographs, 73, Applications of Diamond Films and Related Materials, Tzeng, Y., Yoshikawa, M., Murakawa, M., Feldman, A. (Editors) Elsevier Science Publishes B.V., (1991), p. 259.Google Scholar
[7] Himpsel, F.J., Knapp, J.A., VanVechten, J.A. and Eastman, D.E., Phys. Rev. B 20(2) (1979), p. 624.Google Scholar
[8] Pate, B.B., Surface Science, 165 (1986), p.83.Google Scholar
[9] Nemanich, R.J., Bergman, L., Turner, K.F., Van der Weide, J. and Humphreys, T.P., Physica B 185 (1993), p.528.Google Scholar
[10] Van der Weide, J. and Nemanich, R.J., J. Vac. Sci. Technol. B 12 (1994), p.2475.Google Scholar
[11] Van der Weide, J., Zhang, Z., Baumann, P.K., Wensell, M.G., Bernholc, J. and Nemanich, R.J., Physical Review B 50 (1994), p.5803.Google Scholar
[12] Van der Weide, J. and Nemanich, R.J., J. Vac. Sci. Technol. B 10 (1992), p. 1940.Google Scholar
[13] Van der Weide, J. and Nemanich, R.J., Physical Review B 49 (1994), p. 13629.Google Scholar
[14] Baumann, P.K., Humphreys, T.P. and Nemanich, R.J., Mater. Res. Soc. Symp. Proc. Vol.339 (1994), 69 Google Scholar
[15] Baumann, P.K. and Nemanich, R.J., Applications of Diamond Films and Related Materials, NIST Special Publication 885, Feldman, A., Tzeng, Y., Yarbrough, W.A., Yoshikawa, M., Murakawa, M., (Editors) (1995), p. 41.Google Scholar
[16] Prins, J.F., Diamond and Related Materials 4 (1995), p.580.Google Scholar
[17] Prawer, S., Uzan-Saguy, C., Braunstein, G. and Kalish, R., Appl. Phys. Lett. 63 (18), (1993), p. 2502.Google Scholar
[18] Mearini, G.T., Krainsky, I.L. and Dayton, J.A., Jr, Applications of Diamond Films and Related Materials, NIST Special Publication 885, Feldman, A., Tzeng, Y., Yarbrough, W.A., Yoshikawa, M., Murakawa, M., (Editors) (1995), p. 13.Google Scholar
[19] Kang, W.P., Davidson, J.L., Li, Q., Xu, J.F., Kinser, D.L. and Kerns, D.V.,, Applications of Diamond Films and Related Materials, NIST Special Publication 885, Feldman, A., Tzeng, Y., Yarbrough, W.A., Yoshikawa, M., Murakawa, M., (Editors) (1995), p. 37.Google Scholar
[20] Givargizov, E.I., Zhirnov, V.V., Stepanova, A.N., Rakova, E.V., Kiselev, A.N. and Plekhanov, P.S., Applied Surface Science, 87/88 (1995), p. 24 Google Scholar
[21] Hong, D. and Aslam, M., Applications of Diamond Films and Related Materials, NIST Special Publication 885, Feldman, A., Tzeng, Y., Yarbrough, W.A., Yoshikawa, M., Murakawa, M., (Editors) (1995), p.49 Google Scholar
[22] Shikata, S., Nakahata, H., Higaki, K., Fujii, S., Hachigo, A., Kitabayashi, H., Seki, Y., Tenabe, K. and Fujimori, N., Applications of Diamond Films and Related Materials, NIST Special Publication 885, Feldman, A., Tzeng, Y., Yarbrough, W.A., Yoshikawa, M., Murakawa, M., (Editors) (1995), p.29.Google Scholar
[23] Chalker, P.R., Johnston, C., Crossley, J.A.A., Ambrose, J.C., Ayres, C.F., Harper, R.E., Buckley-Golder, I.M. and Kobashi, K., Diamond and Related Materials, 2 (1993), p.1100.Google Scholar
[24] Roppel, T., Ramesham, R., Ellis, C. and Lee, S.Y., Thin Solid Films 212 (1992) 56 Google Scholar
[25] Kang, W.P., Gurbuz, Y., Davidson, J.L. and Kerns, D.V., J. Electrochem Soc. Vol.141(8) (1994), p. 2251.Google Scholar
[26] Dorsch, O., Holzner, K., Werner, M., Obermeier, E., Harper, R.E., Johnston, C., Chalker, P.R. and Buckley-Golder, I.M., Diamond and Related Materials, 2 (1993), p. 1096.Google Scholar
[27] Totterdell, D.H.J. and Chalker, P.R., European Patent Application EP 0 579 405 AlGoogle Scholar
[28] Buckley-Golder, I.M., Chalker, P.R., Johnston, C., Romani, S. and Werner, M., Advances in New Diamond Science and Technology, Saito, S., Fujimori, N., Fukunaga, O., Kamo, M., Kobashi, K., Yoshikawa, M., Eds. MYU, Tokyo, (1995) p. 669.Google Scholar
[29] Dorsch, O., Holzner, K., Werner, M., Obermeier, E., Harper, R.E., Johnston, C., Chalker, P.R. and Buckley-Golder, I.M., Diamond and Related Materials, 2 (1993), p. 1096.Google Scholar
[30] Kania, D.R., Landstrass, M.I., Plano, M.A., Pan, L.S. and Han, S., Diamond and Related Materials 2 (1993), p. 1012.Google Scholar
[31] Binari, S.C., Marchywka, M., Koolbeck, D.A., Dietrich, H.B., Moses, D., Diamond and Related Materials 2 (1993), p. 1020.Google Scholar
[32] Sugino, T., Itagaki, T. and Shirafuji, J., Proceedings of Diamond Films ‘95. To be published.Google Scholar
[33] Jiang, X., Klages, C.P., Zachii, R., Hartweg, M. and Füsser, H.J., Appl. Phys. Lett., 62 (1993), p. 3438.Google Scholar
[34] Wolter, S.D., Stoner, B.R., Glass, J.T., Ellis, P.J., Buhaenko, D.S., Jenkins, C.E. and Southworth, P., Appl. Phys. Lett., 62 (1993), p. 1215.Google Scholar
[35] Yugo, S., Kimura, T. and Kania, H., Proc. First Int. Conf. on the New Diamond Science and Technology, KTK Scientific Publishers, Tokyo, (1990), p. 119.Google Scholar
[36] Chalker, P.R., Johnston, C., Romani, S., Ayres, C.F., Buckley-Golder, I.M., Krötz, G., Angerer, H., Müller, G., Veprek, S., Kunstmann, T., Legner, W., Smith, L.M., Leese, A.B., Jones, A.C. and Rushworth, S.A., Diamond and Related Materials 4 (1995), p. 632.Google Scholar
[37] Fox, B.A., Hartsell, M.L., Malta, D.M., Wynands, H.A., Kao, C.-T., Plano, L.S., Tessmer, G.J., Hernard, R.B., Holmes, J.S., Tessmer, A.J. and Dreifus, D.L., Diamond and Related Materials 4 (1992), p. 622.Google Scholar
[38] Physics World, March 1995.Google Scholar