Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T23:41:19.005Z Has data issue: false hasContentIssue false

CuO nanowire–Co3O4 nanoparticle heterostructures and their vertically aligned and horizontally suspended architectures

Published online by Cambridge University Press:  01 February 2011

Wenwu Shi
Affiliation:
[email protected], The University of Alabama, Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), Tuscaloosa, Alabama, United States
Nitin Chopra
Affiliation:
[email protected], The University of Alabama, Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), Tuscaloosa, Alabama, United States
Get access

Abstract

Well-controlled architectures (aligned or horizontally suspended) of CuO nanowire (average diameter ~75±18 nm)-Co3O4 nanoparticle (average diameter ~7±1 nm) heterostructures were fabricated in a simple and surfactant-free growth approach. This approach coupled microfabrication methods with a thermal growth method and wet-coating technique. The fabricated heterostructures were characterized by high resolution electron microscopy (SEM and TEM) and X-ray Photoelectron Spectroscopy (XPS) for their size, morphology, phases, interfaces, and composition of heterostructures. Finally, CuO nanowire–Cox3O4 nanoparticle heterostructures were utilized as photocatalyst to degrade organic dye (methyl orange) under a wide range of wavelengths (from UV, 265 nm, to visible region, 580 nm).

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chopra, N. Multi-functional and Multi-component Heterostructured One One-Dimensional Nanostructures: Advances in Growth, Characterization, and Applications, Mater. Technol. Accepted for Publication, (2010).Google Scholar
2 Shen, G. Chen, D. Bando, Y. and Goldberg, D. J. Mater. Sci. Technol. 24, 541549 (2008).Google Scholar
3 Chopra, N. Bachas, L. G. and Knecht, M. R. Chem. Mater. 21, 11761178 (2009).Google Scholar
4 Meyyappan, M. Carbon nanot nanotubes: Science and applications ubes: applications, (CRC Press LLC, Boca Raton, FL, 2005).Google Scholar
5 Wang, Z. L. Nanowires and Nanobelts: Materials, properties and devices - Nanowires and nanobelts of functional materials materials, (Springer Sciences, New York, NY, 2003)Google Scholar
6 Chu, X. Y. Hong, X. Zhang, X. T. Zou, P. and Liu, Y. C. J. Phys Phys. Chem hem. C 112, 1598015984 (2008).10.1021/jp804590yGoogle Scholar
7 Jiang, X. Herricks, T. and Xia, Y. Nano Lett. 2, 13331338 (2002).Google Scholar
8 Makhlouf, S. A. J.Magn. Magn. Mater Mater. 246, 184190 (2002).Google Scholar
9 Park, J. H. Kim, S. and Bard, A. J. Nano Lett. 6, 2428 (2006).Google Scholar
10 Jia, W. Guo, M. Zheng, Z., Yu, T. Wang, Y. Rodriguez, E. G. and Lei, Y.. Electroanalysis 20, 21532157 (2008).Google Scholar
11 Li, Y. Tan, B. and Wu, Y. Nano Lett. 8, 265270 (2008).Google Scholar
12 Chopra, N. Hu, B. and Hinds, B. J. J. Mater. Res. 22, 26912699 (2007).Google Scholar
13 Kwok, R.W.M. XPS Peak Fitting Pr Program for WIN95/98 XPSPEAK Version 4.1, ogram Department of Chemistry, The Chinese University of Hong Kong.Google Scholar
14 Ghijsen, J. Tjeng, L. H. Elp, J. van, Eskes, H. Westerink, J. and Sawatzky, G. A. Phys Phys. Rev. B 38, 1132211329 (1988).Google Scholar
15 Fan, X. Y. Wu, Z. G. Yan, P. X. Geng, B. S. Li, H. J. and Zhang, P. J. Mater. Lett. 62, 18051808 (2008).Google Scholar
16 Deng, R. Yao, B. Li, Y. F. Zhao, Y. M. Li, B. H. Shan, C. X. Zhang, Z. Z. Zhao, D. X. Zhao, J. Y., Shen, D. Z. and Fan, X. W. Appl. Phys. Lett. 94, 022108 (2009).Google Scholar
17 Malone, E.M. Petitto, S.C. and Langell, M.A. Solid State Commun. 130, 571575 (2004).Google Scholar
18 Zhang, Y. Chen, Y. Wang, T. Zhou, J. and Zhao, Y. Micropor. Mater. 114, 257261 (2008).Google Scholar