Published online by Cambridge University Press: 01 February 2011
An insect heart (dorsal vessel) is well suited as an environmentally robust bioactuator since insect tissue is generally robust over culture conditions compared with mammalian tissue. In this paper, the applicability of a caterpillar dorsal vessel to a bioactuator was assessed by fabricating a micropillar actuator driven by dorsal vessel tissue and evaluating the response to electrical pulse stimuli. The actuator worked autonomously for more than 90 days at 25 °C without any maintenance. The average frequency and displacement for 30 s on the 28th day of culturing were 0.83 Hz and 41 μm, respectively. Furthermore, as a regulation method for the dorsal vessel, electrical pulse stimuli were applied to the micropillar actuator. The contractile delay was about 50 ms. A twitch contraction was evoked by electrical pulse stimulus at 20 ms in duration and 10 volts in amplitude. A tetanic contraction was observed when stimuli over 10 Hz were applied.