Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T17:51:34.558Z Has data issue: false hasContentIssue false

Cu-In and Cu-Zn-Sn Films as Precursors for Production of CuInSe2 and Cu2ZnSnSe4 Thin Films

Published online by Cambridge University Press:  31 January 2011

Olga Volobujeva
Affiliation:
[email protected], Tallinn University of Technology, Materials Science, Tallinn, Estonia
Enn Mellikov
Affiliation:
[email protected], Tallinn University of Technology, Materials Science, Tallinn, Estonia
Jaan Raudoja
Affiliation:
[email protected], Tallinn University of Technology, Materials Science, Tallinn, Estonia
Sergei Bereznev
Affiliation:
[email protected], Tallinn University of Technology, Materials Science, Tallinn, Estonia
Maris Pilvet
Affiliation:
[email protected], Tallinn University of Technology, Materials Science, Tallinn, Estonia
Get access

Abstract

The co-sputtered Cu-In precursor layers were characterized by bi-layer surface structure in which island-type crystals were formed in a small-crystalline matrix layer. The elemental composition of the island-type crystals corresponds to the compound CuIn2 and the matrix (area) consists of copper-rich Cu11In9 phase. The surface morphology of sequentially evaporated Cu-Zn-Sn precursor layers is determined by the deposition order of stacked consistent metal layers. Precursor Mo-Sn-Zn-Cu films exhibit a well-formed “mesa-like” structure of the surface in which larger crystals (about 1,5 μm) are located on a “small-crystalline” valley. For films with other sequences of metallic layers, the mesa like structure is not so well exposed and well formed flat precursor layers were produced replacing separate metallic Cu and Sn layers with Cu/Sn alloy layer. Selenization of both Cu-In and Cu-Zn-Sn precursor layers begins with the formation of binary Cu-selenides with compositions varying with the temperature. At temperatures higher than 3700C the selenization of Cu-In results in single-phase CuInSe2 films in contrast to the selenization of Sn-Zn-Cu films that results always in multi-phase films consisting of high quality Cu2ZnSnSe4 crystals and of separate small-crystalline phase of ZnSe.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Assmann, D. Laumanns, U. Uh, D. eds. “Renewable Energy. A Global review of Technologies, Policies and markets”, Earthscan, London, 2006.Google Scholar
2. Wadia, C. Alivisatos, A. P. and Daniel Kammen, M. Environ. Sci. Technol., 43, 6, (2009), 20722077 Google Scholar
3. Matsushita, H. Ichikawa, T. and Katsui, A. Journal of Material Science 40, (2005), 20032005.Google Scholar
4. Babu, G. S. Kishore Kumar, Y. B. Uday Bhaskar, P., and Raja, V. Sundara, J.Phys. D:Appl.Phys. 41, 205305, (2008).Google Scholar
5. Wibowo, R. A. Kim, W. S. Lee, E. S. Munir, B. and Kim, K. H. Journal of Physics and Chemistry of Solids 68, (2007), 19081913.Google Scholar
6. Salomé, P.M.P., Fernandes, P.A. and Cunha, A.F. da, Thin Solid Films, 517, 7(2009), 25312534 Google Scholar
7. Scragg, J.J. Dale, P.J. and Peter, L.M. Thin Solid Films 517, 7(2009), 24812484.Google Scholar
8. Kamoun, N., Bouzouita, H. and Rezig, B. Thin Solid Films 515, 15,(2007), 5949-5952.Google Scholar
9. Todorov, T. Kita, M. Carda, J. and Escribano, P. Thin Solid Films, 517, 7(2009), 25412544.Google Scholar
10. Adurodija, F. O. Song, J. Kim, S. D. Kwon, S. H. Kim, S. K. Yoon, K. H. and Ahn, B. T. Thin Solid Films, 338, 1-2, (1998), 1319.Google Scholar
11. Bekker, J. Alberts, V. and Witcomb, M. J. Thin Solid Films, 387, 1-2, (2001), 4043.Google Scholar
12. , Pisarkiewicz, and Jankowski, H. Vacuum, 70, 2-3, (2003), 435438 Google Scholar
13. Caballero, R. and Guillén, C., Solar Energy Materials and Solar Cells, 86, 1, (2005), 110 Google Scholar
14. Volobujeva, O. Altosaar, M. Raudoja, J. Mellikov, E. Grossberg, M. Kaupmees, L. Barvinschi, P. Solar Energy Materials and Solar Cells, 93, 1, (2009), 1114.Google Scholar
15. Volobujeva, O. Raudoja, J. Mellikov, E. Grossberg, M. Bereznev, S. and Traksmaa, R. Journal of Physics and Chemistry of Solids, (2009) (in press)Google Scholar
16. Volobujeva, O. Mellikov, E. Raudoja, J. Grossberg, M., Bereznev, S., Altosaar, M. and Traksmaa, R., Conference on Optoelectronic and Microelectronic Materials and Devices (COMMAD 2008) Proceedings, Sydney, 28.07-1.08.2008, 257260 Google Scholar