Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T18:54:12.009Z Has data issue: false hasContentIssue false

Cubic Nonlinear Optical Properties of Thin Films of a Series of Aromatic Schiff Base Polymers

Published online by Cambridge University Press:  25 February 2011

Chen-Jen Yang
Affiliation:
Department of Chemical Engineering and Center for Photoinduced Charge Transfer, University of Rochester, Rochester, NY 14627–0166
Samson A. Jenekhe
Affiliation:
Department of Chemical Engineering and Center for Photoinduced Charge Transfer, University of Rochester, Rochester, NY 14627–0166
Herman Vanherzeele
Affiliation:
DuPont Central Research & Development Department, P. O. Box 80356, Wilmington, DE 19880–0356
Jeffrey S. Meth
Affiliation:
DuPont Central Research & Development Department, P. O. Box 80356, Wilmington, DE 19880–0356
Get access

Abstract

The third-order nonlinear optical properties of a series of homopolymers and a random copolymer of conjugated aromatic Schiff base polymers have been investigated by picosecond third harmonic generation spectroscopy in the wavelength range 0.9–2.4 um. The off-resonant χ(3)(-3ω;ω, ω, ω) value at 2.4 μm was found to be 1.6×10−12esu for the parent polymer (PPI). 2, 5-Dimethoxy and 2, 5-dihydroxy substitutions or random colpolymerization was found to enhance the nonresonant optical nonlinearity of PPI by a factor of 1.5–4.5. 2-Methyl substitution lowered the χ(3) value. The three-photon resonance enhanced χ(3) of the polymers was in the range l.l×10−11 to 5.2×l0−11 esu. A three-level essential states model was found to describe the observed χ(3) spectra and the resulting fitting parameters were used to explain the observed trends in structure - χ(3) relationships.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heeger, A. J., Orcnstein, J.; Ulrich, D. R., Eds. Nonlinear Optical Properties of Polymers, (Material Research Society Proceeding, 1988, vol. 109).Google Scholar
2. Prasad, P. N.; Ulrich, D. R., Eds. Nonlinear Optical Properties of Polymers, (Plenum: New York, 1988).Google Scholar
3. Prasad, P. N.; Williams, D. J., An Introduction to Nonlinear Optical Effects in Molecules and Polymers, (John Wiley: New York, 1991).Google Scholar
4. (a) Williams, D. J., Angew. Chem., Int. Ed. Engl., 23 690 (1984).Google Scholar
(b) Williams, D. J., Ed. Nonlinear Optical Properties of Organic And Polymeric Materials, (ACS Symp. Ser. No. 233, 1983).Google Scholar
5. Chemia, D. S.; Zyss, J., Eds. Nonlinear Optical Properties of Organic Molecules And Crystals, Vol. 1 (Academic Press, New York, 1987).Google Scholar
6. (a) Osaheni, J. A.; Jenekbe, S. A.; Vanherzeele, H.; Meth, J. S., Chem. Mater. 3, 218 (1991).Google Scholar
(b) Agrawal, A. K.; Jenekhe, S. A.; Vanherzeele, F.L.; Meth, J. S., Chem. Mater., 1 765 (1991).Google Scholar
(c) Jenekhe, S. A.; Yang, C. J.; Vanherzeele, H.; Meth, J. S., Chem. Mater., 3, 985 (1991).Google Scholar
7. Fann, W. S.; Benson, S.; Madey, J. M. J.; Etemad, S.; Baker, G. L., Kajzar, F., Phys. Rev. Lett., 62, 1492 (1989).Google Scholar
8. Messier, J., in Nonlinear Optical Effects in Organic Polymers, Messier, J.; Kajzar, F., Prasad, P.; Ulrich, D., eds., ( Kluwer Academic Publishers: Dordrecht, 1989), p. 47.Google Scholar
9. (a) Torruellas, W. E.; Neher, D., Zanoni, R.; Stegeman, G. I.; Kajzar, F., Leclerc, M., Chem. Phys. LetL., 175, 11 (1990).Google Scholar
(b) Torruellas, W. E.; Rochford, K. B.; Zanoni, R.; Aramaki, S., Stegeman, G. I., Optics Commun., 82, 94 (1991).Google Scholar
10. D'Alelio, G. F., Encyl. Polym. Sci. Technol., 10, 659 (1969).Google Scholar
11. Morgan, P. W.; Kwolek, S. L.; Pletcher, T. C., Macromolecules, 20, 729 (1987).Google Scholar
12. Millaud, B.; Thierry, A.; Skoulios, A., Mol. CrysL Liq. CrysL Lett., 41, 263 (1978).Google Scholar
13. (a) Yang, C. J.; Jenekhe, S. A., Chem. Mater., 3, 878 (1991).Google Scholar
(b) Yang, C. J.; Jenekhe, S. A., in preparation.Google Scholar
14. Vanherzeele, H., Appl. Optics, 2246 (1990).Google Scholar
15. Buchalter, B., Meredith, G. R., Appl. Optics, 21, 3221 (1982).Google Scholar
16. Bethune, D. S., J. Opt Soc. Am., B6, 910 (1989).Google Scholar
17. Neher, D., Wolf, A.; Bubeck, C.; Wagner, G., Chem. Phys. Lett, 163, 116 (1989).Google Scholar
18. Vanherzeele, H.; Meth, J. S.; Jenekhe, S. A.; Roberts, M. F., J. OpL Soc. Am. B, in press.Google Scholar
19. Meth, J. S.; Vanherzeele, H.; Jenekhe, S. A.; Yang, C. J.; Roberts, M. F.; Agrawal, A. K., SPIE Proceedings, Vol. 1560 (1991).Google Scholar
20. Orr, B. J., Ward, J. F., Mol. Phys., 20, 513 (1971).Google Scholar
21. Heflin, J. R.; Wong, K. Y.; Zamani-Khamiri, O.; Garito, A. F., Phys. Rev. B, 38, 1573 (1988).Google Scholar
22. Soos, Z. G.; Mcwilliams, P. C. M.; Hayden, G. W., Chem. Phys. Lett., 171, 14 (1990).Google Scholar
23. Dixit, S. N.; Guo, D.; Mazumdar, S., Mol. Cryst. Liq. Cryst., 194, 33 (1991).Google Scholar
24. Kuzyk, M. G.; Dirk, C. W., Phys. Rev. A., 41, 5098 (1990).Google Scholar