Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T05:02:50.070Z Has data issue: false hasContentIssue false

Cubic InGaN Grown by Mocvd

Published online by Cambridge University Press:  15 February 2011

J.B. Li
Affiliation:
National Research Center for Opto-electronic Technology, Institute of Semiconductors, CAS, Beijing 100083, China
Hui Yang
Affiliation:
National Research Center for Opto-electronic Technology, Institute of Semiconductors, CAS, Beijing 100083, China
L.X. Zheng
Affiliation:
National Research Center for Opto-electronic Technology, Institute of Semiconductors, CAS, Beijing 100083, China
D.P. Xu
Affiliation:
National Research Center for Opto-electronic Technology, Institute of Semiconductors, CAS, Beijing 100083, China
Y.T. Wang
Affiliation:
National Research Center for Opto-electronic Technology, Institute of Semiconductors, CAS, Beijing 100083, China
Get access

Abstract

We report on the growth of high-quality cubic phase InGaN on GaAs by MOCVD. The cubic InGaN layers are grown on cubic GaN buffer layers on GaAs (001) substrates. The surface morphology of the films are mirror-like. The cubic nature of the InGaN films is obtained by X-ray diffraction (XRD) measurements. The InGaN layers show strong photoluminescence (PL) at room temperature. Neither emission peak from wurtzite GaN nor yellow luminescence is observed in our films. The highest In content as determined by XRD is about 17% with an PL emission wavelength of 450 nm. The FWHM of the cubic InGaN PL peak are 153 meV and 216 meV for 427 nm and 450 nm emissions, respectively. It is found that the In compositions determined from XRD are not in agreement with those estimated from PL measurements. The reasons for this disagreement are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Strite, S., Morkoc, H., J. Vac. Sci. Technol. B 10 1227 (1992).Google Scholar
[2] , Fujieda, Matsumoto, Y., Jpn. J. Appl. Phys. 30 L1665 (1991).Google Scholar
[3] Yoshida, S., Okumura, H., Misawa, S., Sakuma, E., Surf. Sci. 267, 50 (1992).Google Scholar
[4] Kikuchi, A., Hoshi, H., Kishino, K., Jpn. J. Appl. Phys. 33, 688 (1994).Google Scholar
[5] Bharatan, S., Jones, K. S., Abernathy, C. R., Pearton, S. J., Ren, F., Wisk, P. W., Lothian, J. R., J. Vac. Sci. Technol A 12, 1094 (1994)Google Scholar
[6] Okumura, H., Yoshida, S., Okahisa, T., Appl. Phys. Lett. 64, 2997(1994)Google Scholar
[7] Yang, J. W., Kuznia, J. N., Chen, Q. C., Khan, M. Asif., George, T., Graef, M. De, Mahajan, S., Appl. Phys. Lett. 67, 3759(1995)Google Scholar
[8] Hong, H., Wang, K., Vidis, D. Pa, J. Electron. Mater. 24, 213(1995)Google Scholar
[9] Lei, T., Moustakas, T. D., Graham, R. J., He, Y., Berkowitz, S. J., J. Appl. Phys. 71, 4933(1992)Google Scholar
[10] Paisley, M. J., Sitar, Z., Posthill, J. B., Davis, R. F., J. Vac. Sci. Technol. A 7, 701(1989)Google Scholar
[11] Powell, R. C., Lee, N. E., Kim, Y. W., Greene, J. E., J. Appl. Phys. 73, 189(1989)Google Scholar
[12] Yang, Hui, Zheng, L.X., Li, J.B., Wang, X.J., Xu, D.P., Wang, Y.T., and Hu, X.W., submitted to Appl. Phys. Lett.Google Scholar