Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T02:23:42.422Z Has data issue: false hasContentIssue false

The Cubeoctameric Silicate Anion: Formation and Application to Porous Material Synthesis

Published online by Cambridge University Press:  10 February 2011

Isao Hasegawa*
Affiliation:
Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu-City, Gifu 501-1193, Japan
Get access

Abstract

The cubeoctameric silicate anion is one of compounds which can be used as a building block for constructing nanostructures of materials. This paper deals with the synthesis and reactivity of the silicate anion and organic-inorganic hybrid and inorganic multi-component porous materials produced from the anion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hasegawa, I. and Sakka, S., in Zeolite Synthesis, edited by Occelli, M.L. and Robson, H.E. (Am. Chem. Soc. Symp. Ser. 398, Am. Chem. Soc., Washington, D.C., 1989), p. 140.10.1021/bk-1989-0398.ch010Google Scholar
2 Hasegawa, I., in Trends in Organometallic Chemistry 1, (Council of Scientific Information, Trivandrum, India, 1994), p. 131.Google Scholar
3 Richard, P. and Perrault, G., Acta Cryst. B28, 1994 (1972).10.1107/S0567740872005412Google Scholar
4 Meier, W.M., in Molecular Sieves, (Society for Chemical Industry, London, 1968), p. 10.Google Scholar
5 Cagle, P.C., Klemperer, W.G., and Simmons, C.A., in Better Ceramics Through Chemistry IV, edited by Zelinski, B.J.J., Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 29.Google Scholar
6 Feher, F. J. and Weller, K. J., Chem. Mater. 6, 7 (1994).10.1021/cm00037a002Google Scholar
7 Hoebbel, D., Endres, K., Reinert, T., and Schmidt, H., in Better Ceramics Through Chemistry YI, edited by Cheetham, A.K., Brinker, C.J., Mecartney, M.L., and Sanchez, C. (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), p. 863.Google Scholar
8 Hoebbel, D., Endres, K., Reinert, T., and Pitsch, I., J. Non-Cryst. Solids 176, 179 (1994).10.1016/0022-3093(94)90076-0Google Scholar
9 Zhang, C. X., Baranwal, R., and Laine, R. M., Polym. Prep. 36(2), 342 (1995).Google Scholar
10 Hasegawa, I., Ishida, M., Motojima, S., and Satokawa, S., in Better Ceramics Through Chemistry. VI, edited Cheetham, A.K., Brinker, C.J., Mecartney, M.L., and Sanchez, C. (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), p. 163.Google Scholar
11 Hasegawa, I., J. Sol-Gel Sci. Technol. 5, 93 (1995).10.1007/BF00487725Google Scholar
12 Hasegawa, I. and Nakane, Y., in Nanotechnology: Molecularly Designed Materials, edited by Chow, G.-M. and Gonsalves, K.E. (Am. Chem. Soc. Symp. Ser. 622, Am. Chem. Soc., Washington, D.C., 1996), p. 302.10.1021/bk-1996-0622.ch021Google Scholar
13 Hasegawa, I., Nakane, Y., and Takayama, T., Appl. Organomet. Chem. in the press.Google Scholar
14 Agaskar, P.A., J. Chem. Soc., Chem. Commun. 1992, 1024.10.1039/c39920001024Google Scholar
15 Hasegawa, I., Hibino, K., and Takei, K., Appl. Organomet. Chem. in the press.Google Scholar
16 Hoebbel, D. and Wieker, W., Z. Anorg. Allg. Chem., 384, 43 (1971).10.1002/zaac.19713840107Google Scholar
17 Wiebcke, M. and Hoebbel, D., J. Chem. Soc., Dalton Trans. 1992, 2451.Google Scholar
18 Hoebbel, D., Garzó, G., Engelhardt, G., and Vargha, A., Z. Anorg. Alolg. Chem. 494, 31 (1982).10.1002/zaac.19824940104Google Scholar
19 Groenen, E.J.J., Kortbeek, A.G.T.G., Mackay, M., and Sudmeijer, O., Zeolites 6, 403 (1986).10.1016/0144-2449(86)90070-9Google Scholar
20 Hasegawa, I., Kuroda, K., and Kato, C., Bull. Chem. Soc. Jpn. 59, 2279 (1986).10.1246/bcsj.59.2279Google Scholar
21 Lentz, C.W., Inorg. Chem. 3, 574 (1964).10.1021/ic50014a029Google Scholar
22 Hoebbel, D., Starke, P., and Vargha, A., Z. Anorg. Allg. Chem. 530, 135 (1985).10.1002/zaac.19855301116Google Scholar
23 Hasegawa, I., Sakka, S., Kuroda, K., and Kato, C., J. Mol. Liq. 34, 307315 (1987).10.1016/0167-7322(87)80020-XGoogle Scholar
24 Hasegawa, I., Sakka, S., Sugahara, Y., Kuroda, K., and Kato, C., J. Chem. Soc., Chem. Commun., 1989, 208.10.1039/c39890000208Google Scholar
25 Hasegawa, I. and Motojima, S., J. Organomet. Chem. 441, 373 (1992).10.1016/0022-328X(92)80168-WGoogle Scholar
26 Hasegawa, I., Ishida, M., and Motojima, S., Synth. React. Inorg. Met.-Org. Chem. 24, 1099 (1994).10.1080/00945719408001386Google Scholar
27 Marsmann, H., in NMR 17. Basic Principles and Progress, Oxygen-17 and Silicon-29, edited by Diehl, P., Fluck, E., and Kosfeld, R. (Springer-Verlag, Berlin, 1981) p. 178.Google Scholar
28 Babonneau, F., Thorn, K., and Mackenzie, J.D., Chem. Mater. 1, 554 (1989).10.1021/cm00005a017Google Scholar
29 Babonneau, F., Bois, L., Maquet, J., and Livage, J., in EUROGEL '91, edited by Vilminot, S., Nass, R., and Schmidt, H. (North-Holland, Amsterdam, 1992), p. 319.10.1016/B978-0-444-89344-4.50038-0Google Scholar
30 Hasegawa, I. and Sakka, S., Chem. Lett. 1988, 1319.10.1246/cl.1988.1319Google Scholar
31 Götz, J. and Masson, C.R., J. Chem. Soc., A 1970, 2683.10.1039/J19700002683Google Scholar
32 Hasegawa, I., Zeolites 12, 720 (1992).10.1016/0144-2449(92)90122-6Google Scholar
33 Pirard, P., Bonhomme, D., Kolibos, S., Pirard, J.P., and Lecloux, A., J. Sol-Gel Sci. Technol. 8, 831 (1997).Google Scholar
34 Rubin, M.K., Rosinski, E.J., and Plank, C.J., U.S. Patent No. 4 086 186 (25 April 1978).Google Scholar
35 Lopez, T., Asomoza, M., and Gomez, R., Thermochim. Acta, 223, 233 (1993).10.1016/0040-6031(93)80139-2Google Scholar
36 Hasegawa, I., Suzuki, H., and Takei, K., Chem. Lett. in the press.Google Scholar