Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T03:07:24.813Z Has data issue: false hasContentIssue false

Crystallographic Defect Related Degradation in High Density Memory Devices

Published online by Cambridge University Press:  26 February 2011

S.S. Kim
Affiliation:
Texas Instruments, Inc., 13353 Floyd Road, MS 374, Dallas, Texas 75265
W. Wijaranakula
Affiliation:
Shin-Etsu, SEH America, Inc., 4111 NE 112th Avenue, Vancouver, Washington 98682.
Get access

Abstract

Crystallographic defect related degradation in high density memory devices was investigated. The results indicate that the refresh time degradation and bit failure mechanism are directly related to the crystal originated defects generated during Czochralski crystal growth. Defects associated with vacancy aggregations are found to have a detrimental effect on the overall performance of memory devices. Other defects, such as oxide polyhedral precipitates, contribute to a high number of cumulative fail bits, particularly in the bottom section of the crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yamagishi, H., Fusegawa, I., Fujimaki, N., and Katayama, M., Semicond.Sci.Technol., 7, A135 (1992).Google Scholar
2. Kim, S.S. and Wijaranakula, W., J.Electrochem.Soc., 142, 553 (1995).Google Scholar
3. Ryuta, J., Morita, E., Tanaka, T., and Shimanuki, Y., Japan.J.Appl.Phys., 29, L1947 (1990).Google Scholar
4. Nakajima, K., Furukawa, J., Furuya, H., and Shingyouji, T., in Semiconductor Silicon/1994. edited by Huff, H.R., Bergholz, W., and Sumino, K. (Electrochem.Soc.Proc., 94–10, Pennington, NJ, 1994) pp. 168179.Google Scholar
5. Wijaranakula, W. , Zhang, Q.S., Takano, K., and Yamagishi, H., in this proceeding.Google Scholar
6. Yamagishi, H., Fusegawa, I., Takano, K., Iino, E., Fujimaki, N., Ohta, T., and Sakurada, M., in Semiconductor Silicon/1994, edited by Huff, H.R., Bergholz, W., and Sumino, K. (Electrochem.Soc.Proc., 94–10, Pennington, NJ, 1994) pp. 124135.Google Scholar
7. Hourai, M., Nagashima, T., Kajita, E., Miki, S., Sumita, S., Sano, M., and Shigematsu, T., in Semiconductor Silicon/1994, edited by Huff, H.R., Bergholz, W., and Sumino, K. (Electrochem.Soc.Proc., 94–10, Pennington, NJ, 1994) pp. 156167.Google Scholar
8. Ahlburn, B., Novak, R., Galiano, M., and Olsen, J., in ULSI Science and Technology 1991. edited by Andrews, J.M. and Celler, G.K. (Electrochem.Soc.Proc., 91–11, Pennington, NJ, 1991) pp. 617626.Google Scholar
9. Zulehner, W. and Huber, D., in Crystals: Growth, Properties, and Applications, edited by Grabmaier, J. (Springer-Verlag, New York, 1982) pp. 3143.Google Scholar
10. Goodman, A.M., Goodman, L.A., and Gossenberg, H.F., RCA Rev., 44, 327 (1983).Google Scholar
11. Wijaranakula, W. and Matlock, J.H., J.Appl.Phys., 69, 6982 (1991).Google Scholar
12. Wijaranakula, W., J.Appl.Phys., 75, 3678 (1994).Google Scholar
13. Wijaranakula, W., J.Electrochem.Soc., 141, 3273 (1994).Google Scholar
14. Wijaranakula, W. and Aminzadeh, M., J.Appl.Phys., 67, 1566 (1990).Google Scholar
15. Miyashita, M., Hiratsuka, H., and Matsushita, Y., in Defects in Silicon II. edited by Bullis, W.M., Gösele, U., and Shimura, F. (Electrochem.Soc.Proc., 91–9, Pennington, NJ, 1991) pp. 407.Google Scholar