Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T09:54:16.305Z Has data issue: false hasContentIssue false

Crystallization Kinetics and Texture of Sol-Gel PZT Thin Films

Published online by Cambridge University Press:  10 February 2011

V.Ya. Shur
Affiliation:
IPAM, Ural State University, 62008 Ekaterinburg, Russia, [email protected]
E.B. Blankova
Affiliation:
IPAM, Ural State University, 62008 Ekaterinburg, Russia
A.L. Subbotin
Affiliation:
IPAM, Ural State University, 62008 Ekaterinburg, Russia
E.A. Borisova
Affiliation:
IPAM, Ural State University, 62008 Ekaterinburg, Russia
D. Bolten
Affiliation:
IWE Rhein.-Westf. Technichen Hochschule Aachen, 52056 Aachen, Germany
R. Gerhardt
Affiliation:
IWE Rhein.-Westf. Technichen Hochschule Aachen, 52056 Aachen, Germany
R. Waser
Affiliation:
IWE Rhein.-Westf. Technichen Hochschule Aachen, 52056 Aachen, Germany
Get access

Abstract

The morphology and phase evolution of sol-gel PZT thin films during rapid thermal annealing are investigated by in situ recording of scattered light intensity measured in reflected mode and momentary patterns visualized by optical microscope. In addition the texture and fractions of growing phases and the angular dependence of the scattered light are studied in partly annealed films. The kinetic parameters characterizing the transition from pyrochlore to perovskite phase are extracted by mathematical treatment of experimental data. It is shown that the film's texture and the transformation kinetics strongly depend on pyrolysis temperature. A mechanism of texture formation is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brooks, K.G., Reaney, I.M., Klissurka, R., Huang, Y., Bursill, L., and Setter, N., J. Mater. Res. 9, 2540 (1994).Google Scholar
2. Chen, J., Udayakumar, K.R., Brooks, K.G., and Cross, L.E., J. Appl. Phys. 71, 4465 (1992).Google Scholar
3. Huffman, M., Gealy, F.D., Kammerdiner, L., Zurcher, P., Zhu, J.G., Al-Jassim, M., and Echer, C.J., Ferroelectrics 134, 303 (1992).Google Scholar
4. Klee, M. and Larsen, P.K.J., Ferroelectrics 1, 91 (1992).Google Scholar
5. Wilkinson, A.P., Speck, J.S., Cheetham, A.K., Natarajan, S., and Thomas, J.M., Chem. Mater. 6, 750 (1994).Google Scholar
6. Trolier-McKinstry, S., Chen, J., Vedam, K., and Newnham, R., J.Amer.Ceram.Soc. 78, 1907 (1995).Google Scholar
7. Shur, V.Ya., Negashev, S.A., Rumyantsev, E.L., Subbotin, A.L., and Makarov, S.D., Ferroelectrics 169, 63 (1995).Google Scholar
8. Shur, V.Ya., Negashev, S.A., Subbotin, A.L., Borisova, E.A., Ferroelectrics 196, 18 (1997).Google Scholar
9. Shur, V.Ya., Negashev, S.A., Subbotin, A.L., Borisova, E.A., and Trolier-McKinstry, S., Mater. Res. Soc. Symp. Proc. 433, 351 (1996).Google Scholar
10. Pronin, I., Zaytseva, N., Kaptelov, E., and Afanasiev, V., Izv. RAN Ser. Fiz. 61, 379 (1997).Google Scholar
11. Shur, V.Ya., Blankova, E.B., Subbotin, A.L., Borisova, E.A., Pelegov, D.V., Hoffmann, S., Bolten, D., Gerhardt, R., and Waser, R., J. Europ. Ceram. Soc. (in press).Google Scholar
12. Libera, M. and Chen, M., J. Appl. Phys. 73, 2272 (1993).Google Scholar
13. Kolmogorov, A.N., Izv. Acad. Nauk USSR., Ser. Math. 3, 55 (1937).Google Scholar
14. Avrami, M., Chem.Phys. 7, 1103 (1939).Google Scholar
15. Griswold, E., Weaver, L., Sayer, M., Czerwinski, F., and Szpunar, J., Micron 26, 559 (1995).Google Scholar