Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T19:38:34.205Z Has data issue: false hasContentIssue false

Crystallization behavior of Ge1Cu2Te3 amorphous film

Published online by Cambridge University Press:  01 February 2011

Yuji Sutou
Affiliation:
[email protected], Tohoku University, Department of Materials Science, Sendai, Japan
Toshiya Kamada
Affiliation:
[email protected], Tohoku University, Department of Materials Science, Sendai, Miyagi, Japan
Yuta Saito
Affiliation:
[email protected], Tohoku University, Department of Materials Science, Sendai, Miyagi, Japan
Masashi Sumiya
Affiliation:
[email protected], Tohoku University, Department of Materials Science, Sendai, Miyagi, Japan
Junichi Koike
Affiliation:
[email protected], Tohoku University, Department of Materials Science, Sendai, Miyagi, Japan
Get access

Abstract

The electrical resistance on the crystallization process of sputtered-deposited Ge1Cu2Te3 film was investigated by two-point probe method. It was found that the amorphous Ge1Cu2Te3 film crystallizes into a single Ge1Cu2Te3 phase with a chalcopyrite structure, which leads to a large resistance drop. The crystallization temperature of the Ge1Cu2Te3 amorphous film was about 250 °C, which is about 70 °C higher than the conventional Ge2Sb2Te5 amorphous film. The activation energy for the crystallization of the Ge1Cu2Te3 amorphous film was higher than that of the Ge2Sb2Te5 amorphous film. The Ge1Cu2Te3 compound with a low melting point can be expected to be suitable as the phase change material for PCRAM.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Yamada, N. Ohno, E. Nishiuchi, K. Akahira, N. and Takao, M. J. Appl. Phys., 69, 2849 (1991).Google Scholar
[2] Friedrich, I. Weidenhof, V. Njoroge, W. Franz, P. Wuttig, M. J. Appl. Phys., 87 (2000) 4130.Google Scholar
[3] Borisova, Z.U. Glassy Semiconductor, Plenum, New York, 1985, p. 463.Google Scholar
[4] Ligero, R.A. Gasa-Ruiza, M., Trujillo, M.P. Grozco, A. Jimenez-Garay, R., Phys. Chem. Glasses, 35, 115 (1994).Google Scholar
[5] Ramesh, K. Asocan, S. Sangunni, K.S. Gopal, E.R.S. J. Phys. Condens. Matter, 8, 2755 (1996).Google Scholar
[6] Vazquez, J. Lopez-Alemany, P.L., Villares, P. Jimenez-Garay, R., Thermochimica Acta, 327, 191 (1999).Google Scholar
[7] Goncalves, A.P. Lopes, E.B. Rouleau, O. Godart, C. J. Mater. Chem., 20, 1516 (2010).Google Scholar
[8] Dogguy, M. Carcaly, C. Flahaut, J. Rivet et Jean, J. Less-Common Metals, 51, 181 (1977).Google Scholar
[9] Balanzat, E. Hillairet, J. J. Phys. F: Met. Phys., 12, 2907 (1982).Google Scholar
[10] Delgado, G.E. Mora, A.J. Pirela, M. Velasquez, A.V. Villarreal, M. Fernandez, B.J. Phys. Stat. Sol. (a), 201, 2900 (2004).Google Scholar
[11] Berger, L.I. Prochukhan, V.D. Ternary Diamond-Like Semiconductors, Consultants Bureau, New York-London, 1969, p. 62.Google Scholar
[12] Lacaita, A.L. Sol. Stat. Electron., 50, 24 (2006).Google Scholar
[13] Zhang, T. Song, Z. Wang, F. Liu, B. Feng, S. Chen, B. J. J. Appl. Phys., 46, L601 (2007).Google Scholar