Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:22:39.405Z Has data issue: false hasContentIssue false

Crystallinity and Magnetoresistance in Calcium Doped Lanthanum Manganites

Published online by Cambridge University Press:  10 February 2011

E. S. Gillman
Affiliation:
Departments of Chemistry and Physics, Center for Materials Research and Technology - MARTECH, Florida State University, Tallahassee, FL 32306–3006, USA
K. H. Dahmen
Affiliation:
Departments of Chemistry and Physics, Center for Materials Research and Technology - MARTECH, Florida State University, Tallahassee, FL 32306–3006, USA
Get access

Abstract

Thin films of calcium doped lanthanum manganites Lal-xCaxMnO3 (LCMO) with x ∼ 0.41 have been prepared on LaAlO3(001) (LAO) Y-stablized ZrO2(001) (YSZ), and Al2O3(0001) (SAP) substrates by liquid delivery metal-organic chemical vapor deposition (LD-MOCVD). The films on YSZ and SAP substrates have a textured, polycrystalline morphology with a preferred orientation of (110). The films on LAO show a single-crystalline morphology and a (100) orientation. Transport measurements show the polycrystalline films have a resistance peak approximately 60K lower than the films on LAO and, in general, have a much higher overall resistance. The magne-toresistance (MR) ratio ([R(H) - R(0)]/R(H)) is sharply peaked near the maximum in resistance for the films on LAO, while the polycrystalline films show a noticeable absence of this sharply peaked behavior and a flat, rather large (∼ 100%) MR ratio over a large temperature range. These results will be discussed in terms of grain boundary scattering, crystallite size, and magnetization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. van Santen, H. and Jonker, G. H., Physica 16, 599 (1950).Google Scholar
2. van Santen, H. and Jonker, G. H., Physica 16, 337 (1950).Google Scholar
3. Wollan, E. O. and Koehler, W. C., Phys. Rev. 100, 545 (1955).Google Scholar
4. Hwang, H. Y. et al., Phys. Rev. Lett. 75, 914 (1995).Google Scholar
5. Zener, C., Phys. Rev. 81, 440 (1951).Google Scholar
6. Anderson, P. W. and Hasegawa, H., Phys. Rev. 100, 675 (1995).Google Scholar
7. deGennes, P. E., Phys. Rev. 118, 141 (1960).Google Scholar
8. Zhou, J. S., Archibald, W., and Goodeneough, J. B., Nature 381, 770 (1996).Google Scholar
9. Chen, C. H. and Cheong, S.-W., Phys. Rev. Lett. 76, 4042 (1996).Google Scholar
10. Jin, S. et al., Science 264, 413 (1994).Google Scholar
11. von Helmolt, R. et al., Phys. Rev. Lett. 71, 2331 (1993).Google Scholar
12. Snyder, G. J. et al., Phys. Rev. B 53, 1 (1996).Google Scholar
13. Dahmen, K. H. and Carris, M., J. Alloys and Compounds 251, 270 (1997).Google Scholar
14. Dahmen, K. H. and Carris, M., Chemical Vap. Deposition 3, 27 (1997).Google Scholar
15. Heremans, J. J. et al., J. Appl. Phys. 81, 4967 (1997).Google Scholar
16. Gupta, A. et al., Phys. Rev. B 54, R15629 (1996).Google Scholar
17. Hwang, H. Y., Cheong, S. W., Ong, N. P., and Batlogg, B., Phys. Rev. Lett. 77, 2041 (1996).Google Scholar
18. Steenbeek, K. et al. (unpublished).Google Scholar
19. Shreekala, R. et al., Appl. Phys. Let. 71, 282 (1997).Google Scholar