Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T23:38:17.129Z Has data issue: false hasContentIssue false

Crystalline Structure Around the Single Vacancy in Silicon: Formation Volume and Stress Effects

Published online by Cambridge University Press:  10 February 2011

A. Antonelli
Affiliation:
Instituto de Ffsica Gleb Wataghin, Universidade Estadual de Campinas, Unicamp, 13083-970 Campinas, São Paulo, Brazil
Efthimios Kaxiras
Affiliation:
Department of Physics and Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
D. J. Chadi
Affiliation:
NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540-6634
Get access

Abstract

The crystalline structure surrounding a single neutral vacancy in silicon is investigated through extensive first-principles total-energy calculations. The results indicate the existence of two distinct distortions of the lattice around the vacancy with essentially the same formation energies at zero pressure, but, however, with different formation volumes. The effect of hydrostatic and biaxial stresses on the relative concentration of each distortion is discussed, suggesting experimental ways to investigate the crystalline structure around the single vacancy and its role as a mediator of atomic diffusion in silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Fahey, P. M., Griffin, P. B., Plummer, J. D., Rev. Mod. Phys. 61 289 (1989).Google Scholar
[2] Nygren, E., Aziz, M. J., Tunbull, D., Poate, J. M., Jacobson, D. C., and Hull, R., Appl. Phys. Lett. 47 105 (1985).Google Scholar
[3] Mitha, S., Aziz, M. J., Schiferl, D., and Poker, D. B., Appl. Phys. Lett. 69 922 (1996).Google Scholar
[4] Baraff, C. A., Kane, E. O., and Schliiter, M., Phys. Rev. B 21 5662 (1980).Google Scholar
[5] Watkins, G. D. and Troxell, J. R., Phys. Rev. Lett. 44 593 (1980).Google Scholar
[6] Bourgoin, J. and Lannoo, M., Point Defects in Semiconductors II (Springer, Berlin, 1983), Vol. 35.Google Scholar
[7] Antonelli, A. and Bernholc, J., Phys. Rev B 40 10643 (1989).Google Scholar
[8] Sugino, O. and Oshiyama, A., Phys. Rev. B 46 12335 (1992).Google Scholar
[9] Wang, C. Z., Chan, C. T., and Ho, K. M., Phys. Rev. Lett. 66 189 (1991).Google Scholar
[10] Song, E. G., Kim, E., and Lee, Y. H., Phys. Rev. B 48 1486 (1993).Google Scholar
[11] Seong, H. and Lewis, L., Phys. Rev. B 53 9791 (1996).Google Scholar
[12] Ögüt, S., Kim, H., and Chelikowsky, J. R., Phys. Rev. B 56, R11353 (1997).Google Scholar
[13] Mercer, L. J., Nelson, J. S., Wright, A. F., and Stechel, E. B., Modelling Simul. Mater. Sci. Eng. 6 1 (1998).Google Scholar
[14] Tang, M., Colombo, L., Zhu, J., and Rubia, T. D. de la, Phys. Rev. B 55 14279 (1997).Google Scholar
[15] Perdew, J. and Zunger, A., Phys. Rev. B 23 5048 (1984).Google Scholar
[16] Bachelet, G. B., Hamann, D. R., and Schluter, M., Phys. Rev. B26 4199 (1982).Google Scholar
[17] Kleinman, L. and and Bylander, D. M., Phys. Rev. Lett. 48 1425 (1982).Google Scholar
[18] Kringhøj, P., Larsen, A. N., and Shirayev, S. Y., Phys. Rev. Lett. 76 3372 (1996).Google Scholar
[19] Aziz, M. J., Appl. Phys. Lett. 70 2810 (1997).Google Scholar