Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:33:46.105Z Has data issue: false hasContentIssue false

Crystal-field Effect on Magnetic Moment and Exchange-Coupling for Fe/W(100) and Fe/W(110)

Published online by Cambridge University Press:  10 February 2011

X. Qian
Affiliation:
Department of Physics, Colorado State University, Fort Collins, CO 80523, USA Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120, Halle, Germany
W. Hübner
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120, Halle, Germany Department of Physics, Kaiserslautern University, Box 3049, D-67653 Kaiserslautern, Germany
Get access

Abstract

The Full-potential Linearized Augmented Plane-wave (FP-LAPW) method was employed to investigate the magnetic properties of 1 monolayer (ML) Fe on W(100) and W(110) substrates. Magnetic moments of the Fe overlayer are found to be very different with ∼2.0 μB for Fe on W(100) and ∼2.56 μB for Fe on W(110). The exchange coupling between Fe film and W substrate are also found to be orientation-dependent. The electronic coupling in Fe/W(100) thin film is found to be more long-range, compared to the one in Fe/W(110). These differences could be explained by the differences of local atomic bonding and crystal-field splitting in these two orientations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M.B., and Sower, H., Phys. Rev. Lett. 57, 2442 (1986);Google Scholar
Parkin, S.S.P., More, N., and Roche, K.P., Phys. Rev. Lett. 64, 2304 (1990).Google Scholar
2. Yafet, Y., Phys. Rev. B 36, 3948 (1987);Google Scholar
Chappert, C. and Renard, J.P., Europhys. Lett. 15, 553 (1991);Google Scholar
Bruno, P. and Chappert, C., Phys. Rev. Lett. 67, 1602 (1991); 67, 2592 (E) (1991);Google Scholar
Bruno, P. and Chappert, C., Phys. Rev. B 46, 261 (1992);Google Scholar
Coehoorn, R., Phys. Rev. B 44, 9331 (1991).Google Scholar
3. Edwards, D.E., Mathon, J., Muniz, R.B., and Phan, M.S., Phys. Rev. Lett. 67, 493 (1991);Google Scholar
Mathon, J., Villeret, M., and Edwards, D.M., J. Phys.: Condens. Matt. 4, 9873 (1992).Google Scholar
4. Bruno, P., J. Magn. Magn. Mater. 121, 248 (1993);Google Scholar
Bruno, P., Phys. Rev. B 52, 411 (1995);Google Scholar
Stiles, M.D., Phys. Rev. B 48, 7238 (1993).Google Scholar
5. Bruno, P., “Magnetism: Molecules to Materials III Nanosized Magnetic Materials” edited by Miller, Joel S. and Drillon, Marc (WILEY-VCH, Weinheim, 2002), pp. 329 – 353.Google Scholar
6. Nordström, L., Lang, P., Zeller, R., and Dederichs, P.H., Phys. Rev. B 50, 13058 (1994).Google Scholar
7. Lathiotakis, N. N., Györffy, B.L., and Újfalussy, B., Phys. Rev. B 61, 6854 (2000).Google Scholar
8. Hirsch, J.E., Phys. Rev. B 56, 11022 (1997).Google Scholar
9. Momoi, T. and Kubo, K., Phys. Rev. B 58, R567 (1998).Google Scholar
10. Batista, C.D., Bonča, J., and Gubernatis, J.E., Phys. Rev. Lett. 88, 187203 (2002).Google Scholar
11. Maiti, K., Malagoli, M.C., Dallmeyer, A., and Carbone, C., Phys. Rev. Lett. 88, 167205 (2002).Google Scholar
12. Elmers, H.J., Liu, G., and Gradmann, U., Phys. Rev. Lett. 63, 566 (1989).Google Scholar
13. Gradmann, U., ‘Magnetism in ultrathin transition metal films’, in Handbook of Magnetic Materials, Vol. 7, Chapter 1, edited by Buschow, K.H.J., (1993) 196.Google Scholar
14. Sander, D., Skomski, R., Schmidthals, C., Enders, A., and Kirschner, J., Phys. Rev. Lett. 77, 2566 (1996).Google Scholar
15. Hauschild, J., Gradmann, U., and Elmers, H. J., Appl. Phys. Lett. 72, 3211 (1998);Google Scholar
Hauschild, J., Elmers, H.J., and Gradmann, U., Phys. Rev. B 57, R677 (1998).Google Scholar
16. Wulfhekel, W., Zavaliche, W.F., Porrati, F., Oepen, H.P., and Kirschner, J., Europhysics Letters 49, 651 (2000).Google Scholar
17. Mulhollan, G.A., Fink, R.L., Erskine, J.L., and Walters, G.K., Phys. Rev. B 43, 13645 (1991).Google Scholar
18. Qian, X. and Hübner, W., Phys. Rev. B 60, 16192 (1999).Google Scholar
19. Galanakis, I., Alouani, M., and Dreyssé, H., Phys. Rev. B 62, 3923 (2000).Google Scholar
20. Blaha, P., Schwarz, K. and Luitz, J., ‘WIEN97, A full potential linearized augmented plane wave package for calculating crystal properties’, (Karlheinz Schwarz, Tech. Univ. Wien, Vienna 1999), ISBN 3–950103104.Google Scholar
21. Qian, X., and Hübner, W., Phys. Rev. B 64, 092402 (2001).Google Scholar
22. Wilhelm, F., Poulopoulos, P., Wende, H., Scherz, A., and Baberschke, K., Phys. Rev. Lett. 87, 207202 (2001).Google Scholar
23. Weber, W., Kerkmann, D., Pescia, D., Wesner, D. A., and Güntherodt, G., Phys. Rev. Lett. 65, 2058 (1990).Google Scholar
24. Schneider, C.M., Bressler, P., Schuster, P., and Kirschner, J., Phys. Rev. Lett. 64, 1059 (1990).Google Scholar
25. Vollmer, R., van Dijken, S., Schleberger, M., and Kirschner, J., Phys. Rev. B 61, 1303 (2000).Google Scholar
26. Pajda, M., Kudrnovský, J., Turek, I., Drchal, V., and Bruno, P., Phys. Rev. Lett. 85, 5424 (2000).Google Scholar
27. Zhang, R., and Willis, R. F., Phys. Rev. Lett. 86, 2665 (2001).Google Scholar
28. Pajda, M., Kudrnovský, J., Turek, I., Drchal, V., and Bruno, P., Phys. Rev. B 64, 174402 (2001).Google Scholar