Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T15:52:27.929Z Has data issue: false hasContentIssue false

Crystal Structures of Mixed-Conducting Oxides Present in The Sr-Fe-Co-O System

Published online by Cambridge University Press:  10 February 2011

J. P. Hodges
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
J. D. Jorgensen
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
D. J. Miller
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
B. Ma
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439
U. Balachandran
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
J. W. Richardson JR
Affiliation:
Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

The potential applications of mixed-conducting ceramic oxides include solid-oxide fuel cells, rechargeable batteries, gas sensors and oxygen-permeable membranes. Several perovskite-derived mixed Sr-Fe-Co oxides show not only high electrical-conductivity but also appreciable oxygen-permeability at elevated temperatures. For example, dense ceramic membranes of SrFeCo0.5O3-δ can be used to separate oxygen from air without the need for external electrical circuitry. The separated oxygen can be directly used for the partial oxidation of methane to produce syngas. Quantitative phase analysis of the SrFeCo0.5O3-δ material has revealed that it is predominantly composed of two Sr-Fe-Co-O systems, Sr4Fe6-xCoxO13 and SrFe1−xCoxO3-δ. Here we report preliminary structural findings on the SrFe1−xCoxO3-δ (0 ≤ x ≥ 0.3) system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Teraoka, Y., Zhang, H., Furukawa, S., and Yamazoe, N., Chem. Lett., 1743 (1985).Google Scholar
2. Teraoka, Y., Zhang, H., Okamoto, K., and Yamazoe, N., Mater. Res. Bull., 23, 51 (1988).Google Scholar
3. Ma, B., Balachandran, U., Park, J.-H., and Segre, C.U., Solid State Ionics, 83, 65 (1996).10.1016/0167-2738(95)00227-8Google Scholar
4. Ma, B., Balachandran, U., and Park, J.-H., J. Electrochem. Soc., 143, 1736 (1996).Google Scholar
5. Balachandran, U., Dusek, T.J., Sweeney, S.M., Poppel, R.B., Mievelle, R.L., Maiya, P.S., Kleefisch, M.S., Pei, S., Koblinski, T.P., Udovich, C.A., and Bose, A.C., Am. Ceram. Soc. Bull., 74, 71 (1995).Google Scholar
6. Yoshiasa, A., Ueno, H., Kanamaru, F., and Horiuchi, H., Mater. Res. Bull., 21, 175 (1986).Google Scholar
7. Guggilla, S. and Manthiram, A., J. Electrochem. Soc., 144, L120 (1997).Google Scholar
8. Larson, A.C. and Von Dreele, R.B., General Structure Analysis System, Los Alamos National Laboratory, Los Alamos, NM (1985, 1994).Google Scholar
9. Takeda, Y., Kanno, K., Takada, T., Yamamoto, O., Takano, M., Nakayama, N., and Bando, Y., J. Solid State Chem., 63, 237 (1986).Google Scholar
10. Takano, M., Okita, T., Nakayama, N., Bando, Y., Takeda, Y., Yamamoto, Y., and Goodenough, J.B., J. Solid State Chem., 73, 140 (1988).Google Scholar
11. Battle, P.D.. Gibb, T.C., and Lightfoot, P., J. Solid State Chem., 76, 334 (1988).10.1016/0022-4596(88)90227-7Google Scholar