Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T03:14:00.905Z Has data issue: false hasContentIssue false

Crystal Structure and Defects in Nitrogen-Deficient GaN

Published online by Cambridge University Press:  15 February 2011

S. Oktyabrsky
Affiliation:
NYS Center for Advanced Technology, State University of New York at Albany, Albany, NY 12203
K. Dovidenko
Affiliation:
Center for Advanced Materials and Smart Structures, North Carolina State University, Raleigh, NC 27695
A. K. Sharma
Affiliation:
Center for Advanced Materials and Smart Structures, North Carolina State University, Raleigh, NC 27695
V. Joshkin
Affiliation:
Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI, 53706
J. Narayan
Affiliation:
Center for Advanced Materials and Smart Structures, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

We have studied crystal structure and associated defects in GaN films grown on sapphire under nitrogen-deficient conditions by metalorganic chemical vapor deposition (MOCVD) and pulsed laser deposition (PLD). The structural quality of the PLD films grown at 750 °C was comparable with those grown by MOCVD at 1050 °C having threading dislocations density of about 1010 cm-2 at a film thickness 150-200 nm. Microstructure of the PLD films grown at temperatures above 780°C was found to be similar to that of nitrogen-deficient MOCVD films indicating the loss of nitrogen due to thermal decomposition of the nitride layers. Nitrogen-deficient MOCVD and PLD films exhibit polycrystalline structure with a mixture of cubic zinc-blende and wurtzite hexagonal GaN grains retaining tetragonal bonding across the boundaries and hence the epitaxial orientations and polarity. Renucleation of the wurtzite phase at different {111} planes of cubic GaN results in a rough and faceted surface of the film. Most of the stoichiometric films displayed (0001) Ga-face polarity, but the renucleated inclined wurtzite grains grew in the opposite N-face polarity. The major defects related to the cubic structural metastability are stacking faults and microtwins which being nuclei of the metastable cubic phase have an extremely low energy. We elucidate that the cubic phase is more stable under the nitrogen deficiency and, therefore, can exist without decomposition at higher nitrogen vacancy concentrations in the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Held, R., Crawford, D.E., Johnston, A.M., Dabiran, A.M., and Cohen, P.I., J. Electronic Mat. 26, 272 (1997).Google Scholar
2. Briot, O., Alexis, J.P., Sanchez, S., Gil, B., and Aulombard, R.L., Solid-State Electronics, 41, 315 (1997).Google Scholar
3. Chandrasekhar, D., Smith, D.J., Strite, S., Lin, M.E., and Morcoq, H., J. Crystal Growth, 152, 135 (1995).Google Scholar
4. Brandt, O., Yang, H., Jenichen, B., Suzuki, Y., Deritz, L., and Ploog, K.H., Phys. Rev., B 52, R2253 (1995).Google Scholar
5. Sato, M., J. Appl. Phys., 78, 2123 (1995).Google Scholar
6. Nakadaira, A. and Tanaka, H., J. Electronic Mat., 26, 320 (1997).Google Scholar
7. Joshkin, V.A., Roberts, J.C., McIntosh, F.G., Bedair, S.M., Piner, E.L., and Bebbehani, M.K., Appl. Phys. Lett., 71, 234 (1997).Google Scholar
8. Oktyabrsky, S., Dovidenko, K., Sharma, A.K., Narayan, J., in Advances of Laser Ablation of Materials, edited by Singh, R., Lowndes, D., Chrisey, D., Narayan, J., Kawai, T., Fogarassy, E., (Mater. Res. Soc. Proc. 526, San Francisco, 1988) pp.287292.Google Scholar
9. Dovidenko, K., Oktyabrsky, S., Narayan, J., Joshkin, V., Razeghi, M., in Nitride Semiconductors, edited by Ponce, F.A., DenBaars, S.P., Meyer, B.K., Nakamura, S., Strite, S., (Mater. Res. Soc. Proc. 482, Boston, 1997) pp. 411416.Google Scholar
10. Wu, X.H., Kapolnek, D., Tarsa, E.J., Heying, B., Keller, S., Keller, B.P., Misra, U.K., DenBaars, S.P., and Speck, J.S., Appl. Phys. Lett., 68, 1371 (1996).Google Scholar
11. Dovidenko, K., Oktyabrsky, S., Narayan, J., and Razeghi, M., MRS Internet J. Nitride Semicond. Res. 4SI, G6.46 (1999).Google Scholar
12. Liliental-Weber, Z., Kisielowski, C., Ruvimov, S., Chen, Y., Washburn, J., Grzegory, I., Bockowski, M., Jun, J., and Porowski, S., J. Electron. Mat., 25, 1545 (1996).Google Scholar
13. Ponce, F.A., Bour, D.P., Young, W.T., Saunders, M., and Steeds, J.W., Appl. Phys. Lett., 69 337 (1996).Google Scholar
14. Rouviere, J.L., Arlery, M., Niebuhr, R., Bachem, K.H., and Briot, O., Mat. Sci. Eng., B43, 161 (1997)Google Scholar
15. Seelmann-Eggebert, M., Weyher, J.L, Obloh, H., Zimmermann, H., Rar, A., and Porowski, S., Appl. Phys. Lett., 71, 2635 (1997).Google Scholar