Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T05:31:52.524Z Has data issue: false hasContentIssue false

Crystal Growth of Energetic Materials During High Acceleration

Published online by Cambridge University Press:  10 February 2011

M. Y. D. Lanzerotti
Affiliation:
U. S. ARMY ARDEC, Picatinny Arsenal, NJ 07806 5000
J. Autera
Affiliation:
U. S. ARMY ARDEC, Picatinny Arsenal, NJ 07806 5000
L. Borne
Affiliation:
French-German Research Institute of Saint-Louis (ISL), France
J. Sharma
Affiliation:
Naval Surface Warfare Center, Silver Spring, MD 20903
Get access

Abstract

Studies of the growth of crystals of energetic materials under conditions of high acceleration in an ultracentrifuge are reported. When a saturated solution is accelerated in an ultracentrifuge, the solute molecules move individually through the solvent molecules to form a crystal at the outer edge of the tube if the solute is more dense than the solvent. Since there is no evaporation or temperature variation, convection currents caused by simultaneous movement of solvent and solute are minimized and crystal defects are potentially minimized. Crystal growth is controlled by the g-level of the acceleration. In addition, solution inclusions and bubbles migrate out of the saturated solution as a result of the pressure gradient induced by the g-force. We present results of TNT, RDX, and TNAZ grown at high g from various solutions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Laudise, R. A., The Growth of Single Crystals, Prentice-Hall, Inc., New Jersey, p. 39, 1970.Google Scholar
2. Holden, A. and Singer, P., Cry stala nd Crystal Growing,. Doubleday & Company, Inc., New York, 1960.Google Scholar
3. Shlichta, P. J. and Knox, R. E., J. Crystal Growth 3, pp. 808813 (1968).Google Scholar
4. Shlichta, P. J., J. Crystal Growth 119, pp. 17 (1992).Google Scholar
5. Amato, I., Science 253, pp. 3032 (1991).Google Scholar
6. Lanzerotti, M. Y. D., Autera, J., Pinto, J. and Sharma, J. in High Pressure Science and Technology - 1993. edited by S. C. Schmidt, J. W. Shaner, G. A. Samara, and M. Ross (AlP Conference Proceedings 309, Part 2, American Institute of Physics, New York, NY, 1994), pp. 489491.Google Scholar
7. Regel, L. L., Rodot, M. and Wilcox, W. R., eds. J. Crystal Growth 119, pp. 1175 (1992).Google Scholar
8. Regel, L. L. and Wilcox, W. R., eds., Materials Processing In High GraviLy, Plenum Press, New York, 1994.Google Scholar
9. Lanzerotti, M. Y. D., Autera, J., Pinto, J. and Sharma, J., pp. 181184.Google Scholar
10. Baillou, F., Dartyge, J. M., Spyckerelle, C., and Mala, J. in Proc. Tenth Symposium (International) on Detonation, 1993, pp. 816823..Google Scholar
11. Borne, L., pp. 286293.Google Scholar
12. Van Der Steen, A., Verbeek, H. J., and Meulenbrugge, J. J. in Proc Ninth Symposium (International) on Detonation 1989, pp. 8388.Google Scholar
13. Mishra, I. B. and Kieft, L. J. Van de, Proc 19th International Annual Conf_ of ICT Karlsruhe, 1988, pp. 25–1 to 25–21.Google Scholar
14. Borne, L., Proc Europyro 95. 6eme Cong. Intl. de Pyro, Tours-France, pp. 125131, 1995.Google Scholar
15. Dick, J. J., J. App. Phys. 53, pp. 61616167 (1982).Google Scholar
16. Dick, J. J., J. App. Phys. Lett. 44, pp. 859861 (1984).Google Scholar
17. Dick, J. J. in Shock Waves In Condensed Matter edited by Gupta, Y. M. (Plenum Press, New York, NY, 1986), pp. 903907.Google Scholar
18. Dick, J. J., Mulford, R. N., Spencer, W. J., Petit, D. R., Garcia, E., and Shaw, D. C., J. App. Phys. 70, pp. 35723587 (1991).Google Scholar
19. Dick, J. J., Garcia, E., and Shaw, D. C. in Shock Compression of Condensed Matter-1091, edited by Schmidt, S. C., Dick, R. D., Forbes, J. W., Tasker, D. G. (Elsevier Science Publishers, The Netherlands, 1992) pp. 349352.Google Scholar
20. Dick, J. J., Garcia, E., and Shaw, D. C. in Shock Compression Of Condensed Matter - 1993 edited by S. C. Schmidt, J. W. Shaner, G. A. Samara, and M. Ross (AIP Conference Proceedings 309, Part 2, American Institute of Physics, New York, NY, 1994), pp. 13731376.Google Scholar
21. Lanzerotti, M. Y. D., Autera, J., Pinto, J., and Sharma, J. in Army Science Conference Proceedings., 1994, Vol.1, pp. 6975.Google Scholar
22. Gallagher, H. G. and Sherwood, J. N. in Structure and Properties of Energetic Materials, edited by Liebenberg, D. H., Armstrong, R. W., and Gilman, J. J. (Mater. Res. Soc. Proc. 296, Pittsburgh, PA 1993), pp. 215219.Google Scholar
23. Morrow, S., U. S. Army ARDEC, 1989.Google Scholar
24. Dobratz, B. M. and Crawford, P. C., Properties of Chemical Explosives and Explosive Simulants. UCRL-52997, Lawrence Livermore National Laboratory, University of California, Livermore, CA, 1985.Google Scholar
25. Weast, R. C., Handbook of Chemistry and Physics, CRC Press, Cleveland, OH, 1975–1976.Google Scholar
26. Kaye, S. M., Encyclopedia of Explosives and Related Items Picatinny Arsenal Technical Report 2700, Vol.9, p. T263 (1980).Google Scholar
27. Rogers, J. T., Physical and Chemical Properties of TDX and HMX Control No. 20-P-26, 1962.Google Scholar
28. Archibald, T. G., Gilardi, R., Baum, K., and George, C., J. Org. Chem. 55, p. 29920 (1990).Google Scholar
29. Stec, D., GEO-CENTERS, INC., 1992.Google Scholar
30. Iyer, S., Eng, S., Joyce, M., Perez, R., Alster, J., Stec, D., Proc. of the Joint International Symp~osium on Compatibility of Plastics and Other Materials with Explosives- Propellants, Pyrtjechnics and Processing of Explosives. Propellants. and Ingredients, pp. 8084, 1991.Google Scholar