Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T01:52:53.975Z Has data issue: false hasContentIssue false

Critical Concentrations of Atmospheric Contaminants in a-Si:H and μc-Si:H Solar Cells

Published online by Cambridge University Press:  01 February 2011

Tsvetelina Merdzhanova
Affiliation:
[email protected], Forschungszentrum Jülich, IEF5-Photovoltaik, Juelich, Germany
Jan Woerdenweber
Affiliation:
[email protected], Forschungszentrum Jülich, IEF5-Photovoltaik, Juelich, Germany
Thilo Kilper
Affiliation:
[email protected], Forschungszentrum Jülich, IEF5-Photovoltaik, Juelich, Germany
Helmut Stiebig
Affiliation:
[email protected], Malibu GmbH & Co. KG, Bielefeld, Germany
Wolfhard Beyer
Affiliation:
[email protected], Forschungszentrum Jülich GmbH, IEF5-Photovoltaik, Leo Brandt Strasse, Jülich, 52425, Germany, 492461613925, 492461613735
Aad Gordijn
Affiliation:
[email protected], Forschungszentrum Jülich GmbH, IEF5-Photovoltaik, Leo Brandt Strasse, Jülich, 52425, Germany, 492461613925, 492461613735
Get access

Abstract

We report on a direct comparison of the effect of the atmospheric contaminants on a-Si:H and μc-Si:H p-i-n solar cells deposited by plasma-enhanced chemical vapor deposition (PECVD) at 13.56 MHz. Nitrogen and oxygen were inserted by two types of controllable contamination sources: (i) directly into the plasma through a leak at the deposition chamber wall or (ii) into the process gas supply line. Similar critical concentrations in the range of 4-6×1018 cm-3 for nitrogen and 1.2-5×1019 cm-3 for oxygen were observed for both a-Si:H and μc-Si:H cells for the chamber wall leak. Above these critical concentrations the solar cell efficiency decreases for a-Si:H solar cells due to losses in the fill factor under red light illumination (FFred). For μc-Si:H cells the losses in FFred and in short-circuit current density deteriorate the device performance. Only for a-Si:H the critical oxygen concentration is found to depend on the contamination source. Conductivity measurements suggest that at the critical oxygen concentration the Fermi level is located about 0.05 eV above midgap for both a-Si:H and μc-Si:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rech, B. et al., Proc. 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, 391 (1998).Google Scholar
2 Kroll, U., Meier, J., Keppner, H., Shah, A., Littlewood, S. D., Kelly, I. E., and Giannoulès, P., J. Vac. Sci. Technol. A 13, 2742 (1995).Google Scholar
3 Woerdenweber, J. et al., J. Appl. Phys. 104, 094507 (2008).Google Scholar
4 Morimoto, A., Matsumoto, M., Yoshita, M., Kumeda, M., and Shimizu, T., Appl. Phys. Lett. 57, 2130 (1991).Google Scholar
5 Shimizu, T., Matsumoto, M., Yashita, M., Iwami, M., Morimoto, A., and Kumeda, M., J. NonCryst. Solids 137–138, 391 (1991).Google Scholar
6 Kinoshita, T., Isamura, M., Hishikawa, Y., and Tsuda, S., Jpn. J. Appl. Phys. 35, 3819 (1996).Google Scholar
7 Torres, P., Meier, J., Flückinger, R., Kroll, U., Selvan, J.A., Keppner, H., Shah, A., Littelwood, S.D., Kelly, I.E., and Giannoulès, P., Appl. Phys. Lett. 69, 1373 (1996).Google Scholar
8 Ehara, T., Appl. Surf. Phys. 113/114, 126 (1997).Google Scholar
9 Kamei, T., and Wada, T., J. Appl. Phys. 96, 2087 (2004).Google Scholar
10 Kilper, T. et al., J. Appl. Phys. 105, 074509 (2009).Google Scholar
11 Stutzmann, M., Jackson, W. B., and Tsai, C.C., Phys. Rev. B 32, 23 (1985).Google Scholar
12 Finger, F., Müller, J., Malten, C., Carius, R., and Wagner, H., J. Non-Cryst. Solids 266–269, 511 (2000).Google Scholar
13 Woerdenweber, J. et al., Appl. Phys. Lett. 96, 103505 (2010).Google Scholar
14 Material Safety Data Sheet, Nitrogen-Silane Mixtures (Chemical Safety Associates, La Mesa, CA, USA, 2002).Google Scholar