Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T06:23:14.387Z Has data issue: false hasContentIssue false

Creating Dense, Constrained Ce0.9Gd0.1O1.95 Films at Low Temperature for SOFC Applications

Published online by Cambridge University Press:  01 February 2011

Jason D. Nicholas
Affiliation:
[email protected], University of California at Berkeley, Materials Science and Engineering, 210 Hearst Memorial Mining Building, Berkeley, CA, 94703, United States, 510-717-2527, 510-486-6898
Lutgard C. De Jonghe
Affiliation:
[email protected], University of California at Berkeley, Materials Science and Engineering Department, 210 Hearst Memorial Mining Building, Berkeley, CA, 94720, United States
Get access

Abstract

We have investigated the effect of various dopants on the sintering characteristics of Ce0.9Gd0.1O1.95 (CGO) and found that 99% dense electrolyte pellets can be produced at the record low temperature of 800°C (as opposed to the 1400°C typically needed) by sintering Ce0.9Gd0.1O1.95 with as little 3mol% lithium. Our studies indicate that doping the CGO surface with lithium nitrate, as opposed to using alternative lithium salts, produces the largest decrease in sintering temperature. Unlike other dopants that lower the sintering temperature by altering the near grain boundary vacancy concentration, lithium lowers the sintering temperature through the formation of an intergranular liquid phase. This liquid phase allows fully dense, completely constrained CGO films to be produced on inert substrates at temperatures as low as 950°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Scherer, G. W. and Garino, T., Journal of the American Ceramic Society 68 (1985) 216.Google Scholar
[2] Lee, J.-S., Choi, K.-H., Ryu, B.-K., Shin, B.-C. and Kim, I.-S., Ceramics International 20 (2004) 807.Google Scholar
[3] Gil, V., Tartaj, J., Moure, C. and Duran, P., Journal of the European Ceramic Society 27 (2007) 801.Google Scholar
[4] Jud, E., Zhang, Z., Sigle, W. and Gauckler, L. J., Journal of Electroceramics 16 (2006) 191.Google Scholar
[5] Kleinlogel, C. and Gauckler, L. J., Advanced Materials 13 (2001) 1081.Google Scholar
[6] Fagg, D. P., Kharton, V. V. and Frade, J. R., Journal of Electroceramics 9 (2002) 199.Google Scholar
[7] Lewis, G. S., Atkinson, A., Steele, B. C. H. and Drennan, J., Solid State Ionics 152–153 (2002) 567.Google Scholar
[8] Mori, M., Suda, E., Pacaud, B., Murai, K. and Moriga, T., Journal of Power Sources 157 (2006) 688.Google Scholar
[9] Perez-Coll, D., Nunez, P., Abrantes, J. C. C., Fagg, D. P., Kharton, V. V. and Frade, J. R., Solid State Ionics 176 (2005) 2799.Google Scholar
[10] Zhang, T. S., Ma, J., Leng, Y. J., Chan, S. H., Hing, P. and Kilner, J. A., Solid State Ionics 168 (2004) 187.Google Scholar
[11] Zhang, T., Hing, P., Huang, H. and Kilner, J., Materials Letters 57 (2002) 507.Google Scholar
[12] Zhang, T. S., Ma, J., Chan, S. H. and Kilner, J. A., Solid State Ionics 176 (2005) 377.Google Scholar
[13] Zhang, T. S., Ma, J., Kong, L. B., Chan, S. H., Hing, P. and Kilner, J. A., Solid State Ionics 167 (2004) 203.Google Scholar
[14] Zhang, T. S., Ma, J., Kong, L. B., Hing, P., Leng, Y. J., Chan, S. H. and Kilner, J. A., Journal of Power Sources 124 (2003) 26.Google Scholar
[15] Zhang, T. S., Ma, J., Kong, L. B., Zeng, Z. Q., Hing, P. and Kilner, J. A., Materials Science and Engineering B 103 (2003) 177.Google Scholar
[16] Lee, J.-S. and Choi, K.-H., Journal of Materials Science 40 (2005) 1153.Google Scholar
[17] Kang, C. Y., Kusaba, H., Yahiro, H., Sasaki, K. and Teraoka, Y., Solid State Ionics 177 (2006) 1799.Google Scholar
[18] Jud, E. and Gauckler, L., Journal of the American Ceramic Society 89 (2006) 2970.Google Scholar
[19] Nicholas, J. D. and DeJonghe, L. C., in Proceedings of the European Fuel Cell Forum (Lucerne, Switzerland, 2006) p. P0511.Google Scholar
[20] Finley, B. D. and Saltzman, E. S., in American Geophysical Union Fall Meeting (San Francisco, CA, 2006).Google Scholar
[21] Chase, M. W., Journal of Physical Chemical Reference Data, Monograph 9 (1998) 1.Google Scholar
[22] Barin, I., Thermochemical Data of Pure Substances (VCH, New York, 1995).Google Scholar
[23] Steele, B. C. H., Lewis, G., Oishi, N. and Selcuk, A., Densification of Ceria Based Electrolytes, in "World Intellectual Property Organization Patent Number WO 2004/089848 A1" (Brian Charles Hilton Steele, United Kingdom, 2004).Google Scholar
[24] Brandon, N. P., Corcoran, D., Cummins, D., Duckett, A., El-Khoury, K., Haigh, D., Leah, R., Lewis, G., Maynard, N., McColm, T., Trezona, R., Selcuk, A. and Schmidt, M., Journal of Materials Engineering and Performance 13 (2004) 253.Google Scholar