Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T13:22:51.527Z Has data issue: false hasContentIssue false

Corrosion Kinetics of Laser Treated NiTi Shape Memory Alloy Biomaterials

Published online by Cambridge University Press:  10 February 2011

F. Villermaux
Affiliation:
Biomaterials-Biomechanics Research Group, Institute of Biomedicai Engineering, Ecole Polytechnique of Montreal, C.P. 6079, Suce centre-ville, Montreal, Quebec, Canada, H3C 3A7
I. Nakatsugawa
Affiliation:
Institute of Magnesium Technology, 357 rue Franquet, Ste-Foy, Quebec, Canada, GIP 4N7
M. Tabrizian
Affiliation:
Biomaterials-Biomechanics Research Group, Institute of Biomedicai Engineering, Ecole Polytechnique of Montreal, C.P. 6079, Suce centre-ville, Montreal, Quebec, Canada, H3C 3A7
D. L. Piron
Affiliation:
Department of Metallurgy, Ecole Polytechnique of Montreal, C.P. 6079, Succ centre-ville, Montreal, Quebec, Canada, H3C 3A7
M. Meunier
Affiliation:
Department of Engineering Physics, Ecole Polytechnique of Montreal, C.P. 6079, Succ centre-ville, Montreal, Quebec, Canada, H3C 3A7
U'H. Yahia
Affiliation:
Biomaterials-Biomechanics Research Group, Institute of Biomedicai Engineering, Ecole Polytechnique of Montreal, C.P. 6079, Suce centre-ville, Montreal, Quebec, Canada, H3C 3A7
Get access

Abstract

NiTi shape memory alloy presents interesting mechanical properties as surgical implants. However, due to its high amount of Ni which may dissolve and release toxic ions in human fluids, the medical use of this material is a great concern. We have developed a laser treatment which modifies the oxide layer and enhances uniform and localised corrosion resistance of NiTi alloy.

In this paper we further analysed the effect of this treatment with potentiostatic and AC impedance measurements in physiological Hank's solution. We conclude that the laser treatment creates a stable passive film which results in improved corrosion resistance of this alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, R.G., Dai, K.R., Chen, Y.Q. and Shi, D.W. in The First International Conference on Shape Memory and Superelastic Technologies, edited by Pelton, A.R., Hodgson, D. and Duerig, T. (SMST Proc., Pacific Grove, CA, 1994) pp. 499503.Google Scholar
2. Dai, K.R., Sun, X.H., Tang, R.G., Qiu, S.J. and Ni, C., Injury 24 (10), 651 (1993).Google Scholar
3. Putters, J.L.M., Kaulesar Sukul, D.M.K.S., de Zeeuv, G.R., Bijma, A. and Besselink, P.A., Eur. Surg. Res. 24, 378 (1992).Google Scholar
4. Dutta, R.S., Madangopal, K., Gadiyar, H.S. and banerjee, S., Brit. Corr. J. 28 (3), 217 (1993).Google Scholar
5. Simske, S.J. and Sachdeva, R., J. Biomed. Mat. Res. 29, 527 (1995).Google Scholar
6. Assad, M., Lombardi, S., Berneche, S., Desrosier, E.A. and Yahia, L'H. in The First International Conference on Shape Memory and Superelastic Technologies, edited by Pelton, A.R., Hodgson, D. and Duerig, T. (SMST Proc., Pacific Grove, CA, 1994) pp 731736.Google Scholar
7. Berger-Gorbet, M., Broxup, B., Rivard, C. and Yahia, L'H., J. Biomed. Mat. Res. 32, 243 (1996).Google Scholar
8. Shabalovskaya, S., Cunnuck, J., Anderegg, J. and Sachdeva, B. in The First International Conference on Shape Memory and Superelastic Technologies, edited by Pelton, A.R., Hodgson, D. and Duerig, T. (SMST Proc., Pacific Grove, CA, 1994) pp 209–214.Google Scholar
9. Bass, J.K., Fine, H. and Cisneros, G.J., Am. J. Orthod. Dentof. Orthop. 103 (3), 280 (1993).Google Scholar
10. Rondelli, G., Vincentini, B. and Cigada, A., Coir. Sci. 30 (8–9), 805 (1990).Google Scholar
11. Nakayama, Y., Yamamuro, T., Kotoura, Y. and Oka, M., Biomaterials 10, 420 (1989).Google Scholar
12. Villermaux, F., Tabrizian, M., Yahia, L'H., Meunier, M. and Piron, D., Appl. Surf. Sci. (in press).Google Scholar
13. Endo, K., Sachdeva, R., Araki, Y. and Ohno, H., Dent. Mat. J. 13 (2), 228 (1994).Google Scholar
14. Sohmura, T. in The Third World Biomaterial Congress (3rd WBC Proc., Kyoto, Japan, 1988), p574.Google Scholar
15. Villermaux, F., Tabrizian, M., Yahia, L'H., Meunier, M. and Piron, D., Bio-Med. Mat. Eng. (in press).Google Scholar
16. Green, S.M., Grant, D.M., Wood, J.V., Johanson, A., Johnson, E., Sarholt-Kristyensen, L., J. Mat. Sci. Lett. 12, 618 (1993).Google Scholar
17. Grant, D.M., Green, S.M., Wood, J.V., Acta Metall. Mater. 43 (3), 1045 (1995).Google Scholar
18. Bundy, K.J., Dillard, J. and Luedemann, R., Biomaterials 14 (7), 529 (1993).Google Scholar
19. Sung, P., Fraker, A.C., in The third World Biomaterials Congress. (3rd WBC Proc., Kyoto, Japan, 1988), p 201.Google Scholar
20. Cigada, A., De Santis, G., Gatti, A.M., Rondelli, G., Vicentini, B., Zaffe, D. in Clinical implant Materials, Advances in Biomaterials, Volume 9. edited by Heimke, G., Soltész, U. and Lee, A.J.C. (Eiservier Science Publishers, Amsterdam, 1990) p. 51.Google Scholar